Omics Data Integration in Biomedical Research and Precision Medicine

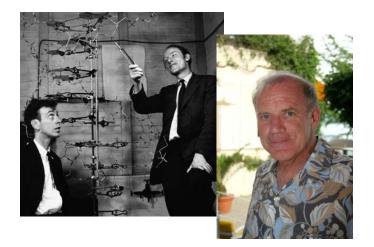
Jornadas SEFORI, CITIC-UGR

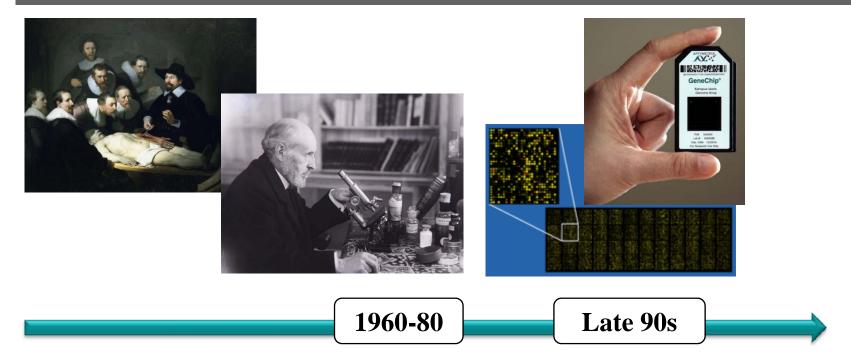
Oct 2018

Pedro Carmona-Saez

Genyo Bioinformatics Unit

Universidad de Granada





Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray

Mark Schena⁽¹⁾, Dari Shalon⁽¹⁾, Ronald W. Davis⁽²⁾, Patrick O. Brown⁽³⁾

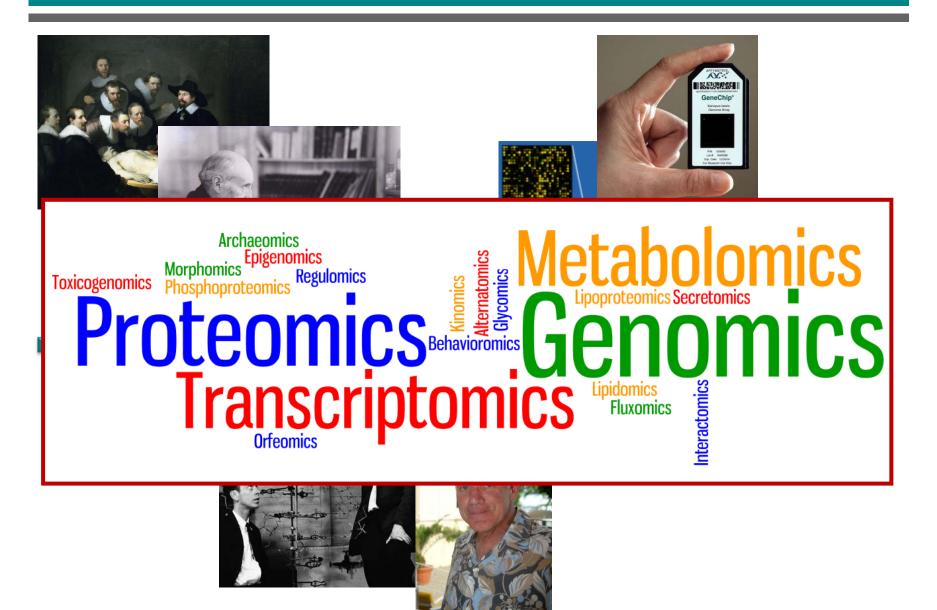
+ Author Affiliations

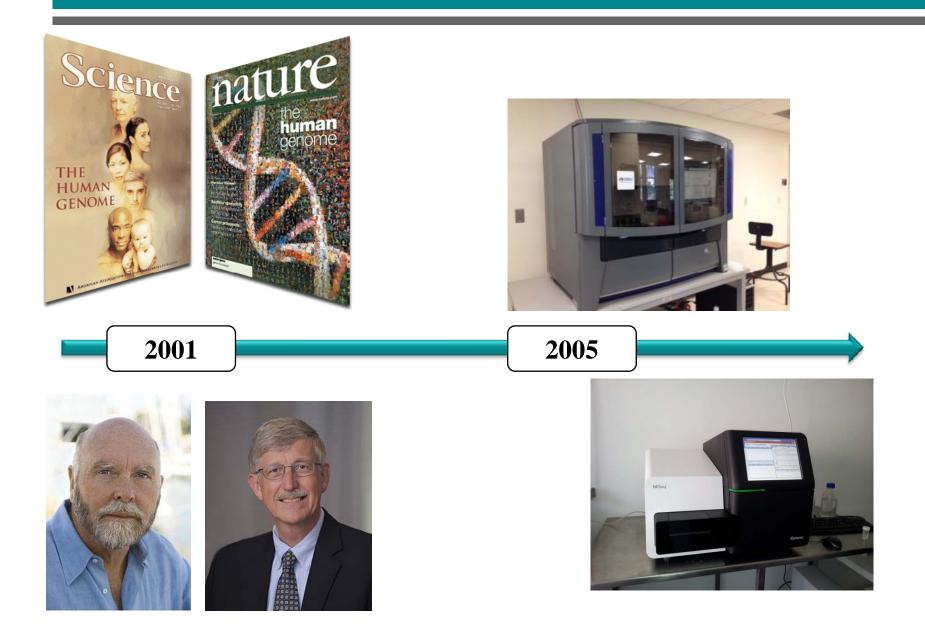
 $\varphi^{(1)}$ These authors contributed equally to this work.

(2) Present address: Synteni, Palo Alto, CA 94303, USA.

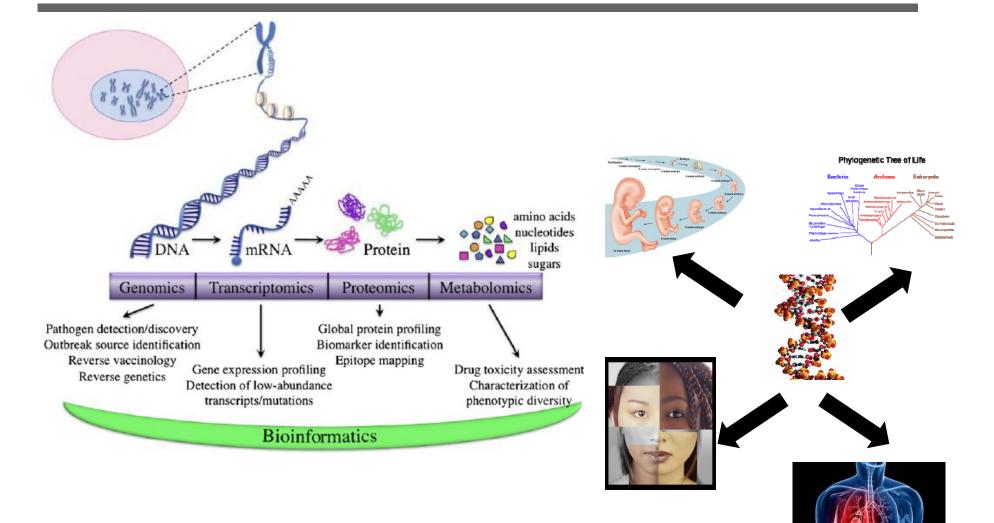
(3) To whom correspondence should be addressed. E-mail: pbrown@cmgm.stanford.edu

Science 20 Oct 1995: Vol. 270, Issue 5235, pp. 467-470 DOI: 10.1126/science.270.5235.467

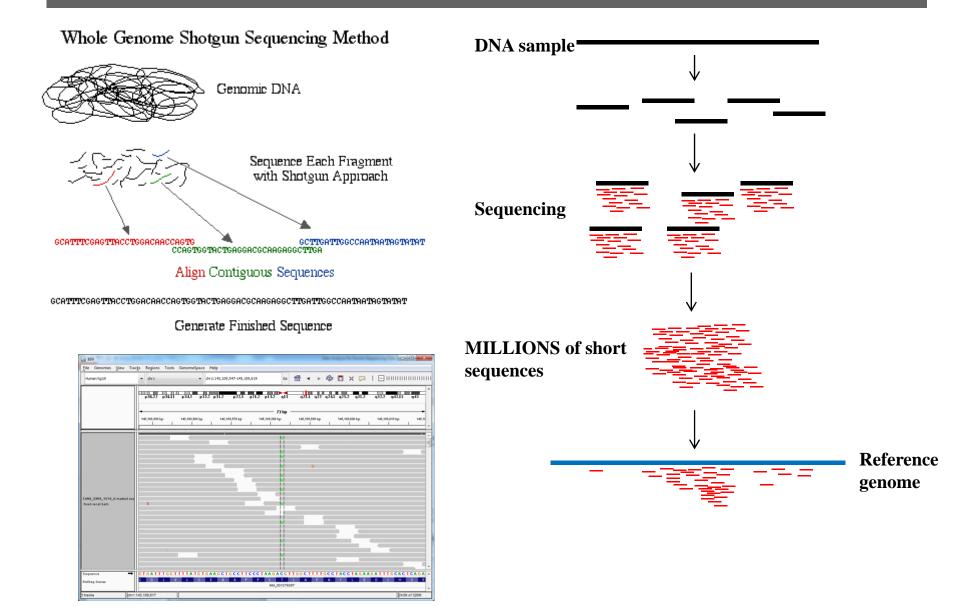




The code of life



Next Generation Sequencing



Next Generation Sequencing

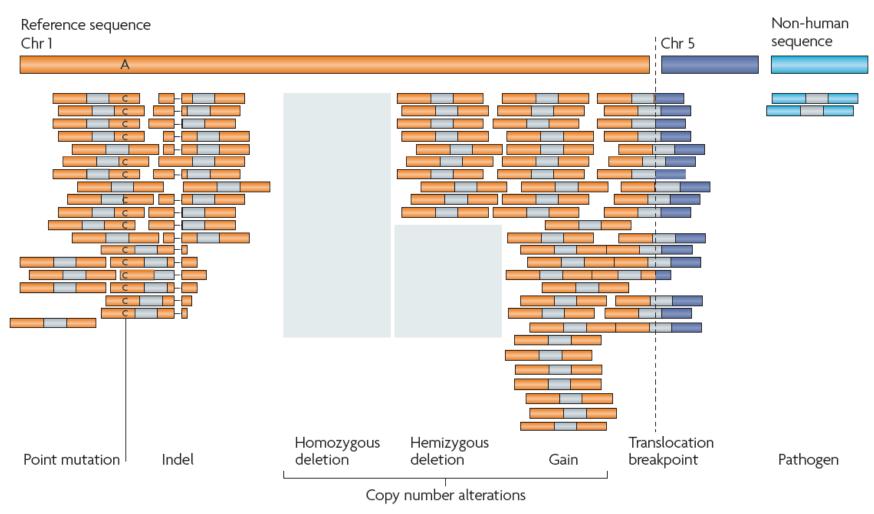


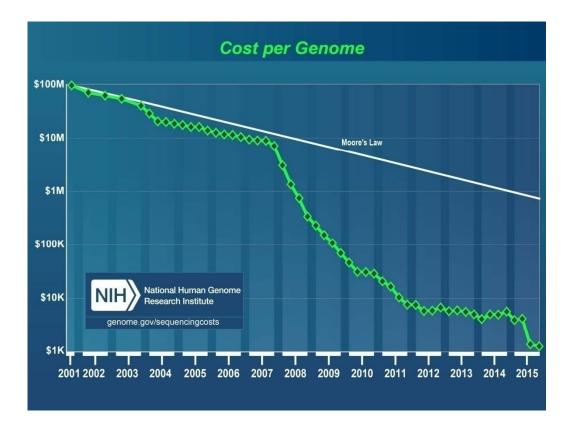
Figure 3 | Types of genome alterations that can be detected by second-generation sequencing. Sequenced

Meyerson et al. NRG 2010

Pricing trend

(2001) The Human genome project:

- 13 years
- 23 labs
- \$500 Million.
- A Human genome today:
- 1 day
- -1 machine
- \$1,000



Increasing Information and Resources

Exponential growth of Biological Databases and information

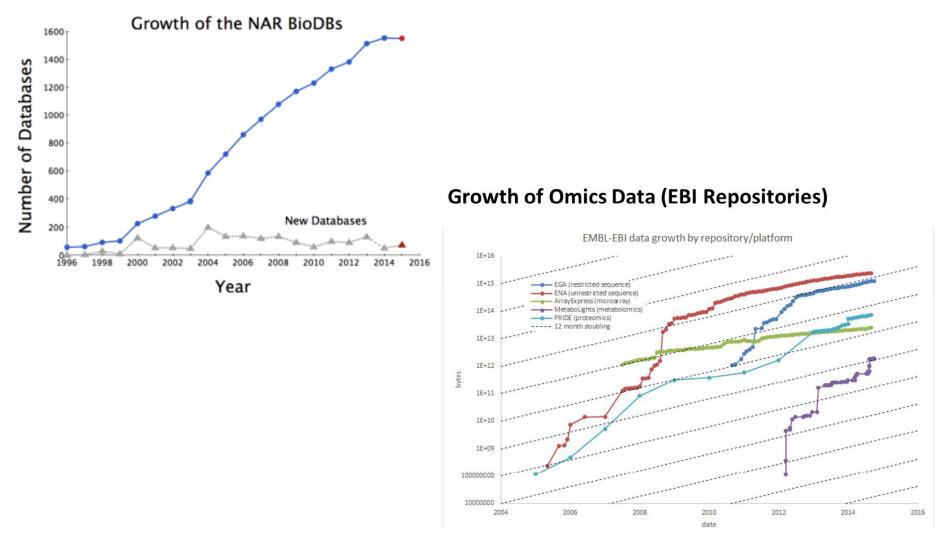


Illustration: Christoph Steinbeck, EBI

Big Data in Biology

PERSPECTIVE

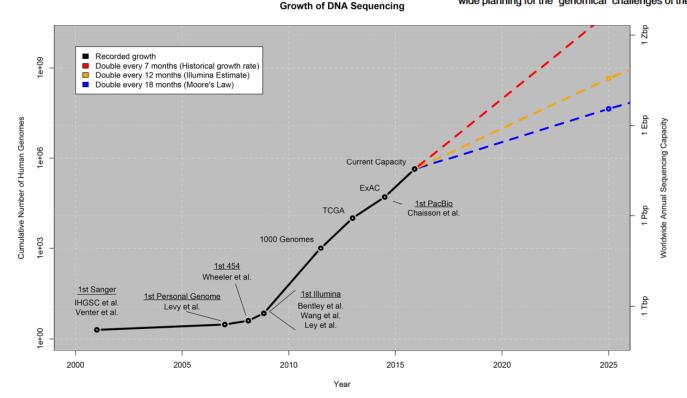
Big Data: Astronomical or Genomical?

Zachary D. Stephens¹, Skylar Y. Lee¹, Faraz Faghri², Roy H. Campbell², Chengxiang Zhai³, Miles J. Efron⁴, Ravishankar Iyer¹, Michael C. Schatz⁵*, Saurabh Sinha³*, Gene E. Robinson⁶*

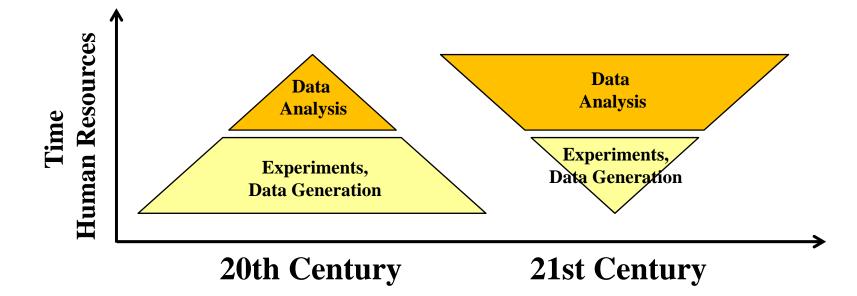
PLOS Biology 2015

Abstract

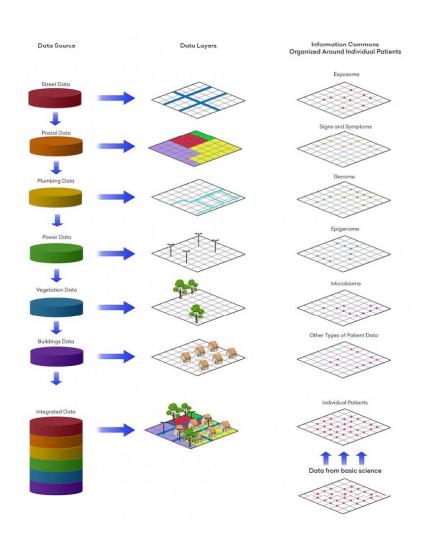
Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

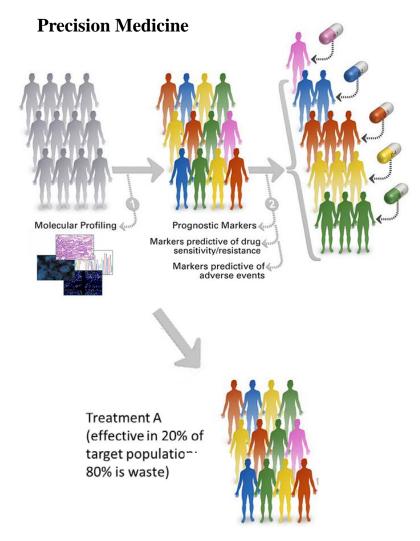


Biological research has changed



Precision Medicine





Traditional Approach

What are the Challenges?

Storage

• Fast and efficient storage systems to query large collections of 'omics data.

Distribution and data access

• Cloud-computing systems such as EasyGenomics (BGI) or "Embassy" as part of ELIXIR project

Analysis

- Algorithms/methods to **extract knowledge and information from the data**
- Integration of biological domain expertise, large-scale machine learning systems and efficient computing infrastructure

Biological systems are complex. Genes may carry out different functions in different cell types / tissues, even antagonist functions.

•Signal-to-noise ratio and confounding. High throughput biological data have low signal-to-noise ratio and many variables that make it difficult to distinguish signals from random patterns.

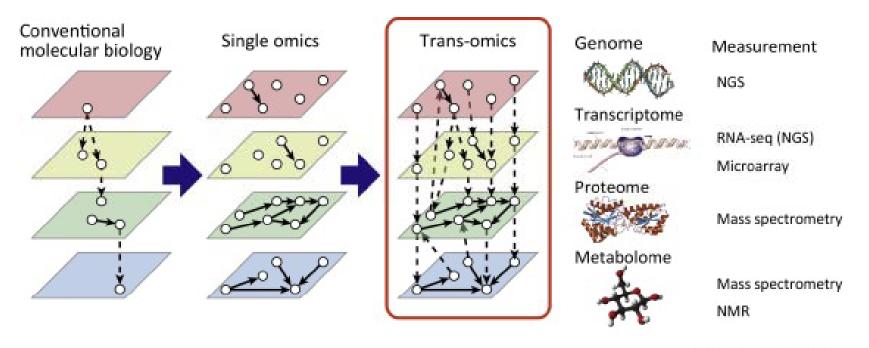
•High-dimensionality, large number of variables and small number of samples

Biological systems are dynamic

Integrating Omics Data

• Integrating different studies/datasets with the same type of data. Integrate data with the thousands of other published datasets and look for similar patterns.

• Integrarting multiple data types. Integrate different omics data (genomics, transcriptomics, metabolomics, ...)



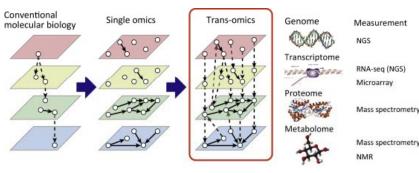
Trends in Biotechnology

Multi-omics integration for Biomarker Discovery

An increasing number of projects include measurements of the same samples from multiple omics techniques.

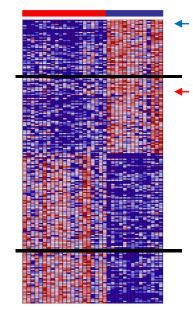
Integrating different OMICS layers will potentially provide:

- More comprehensive view of biological processes
- More robust patterns
- Better predictions and classifications

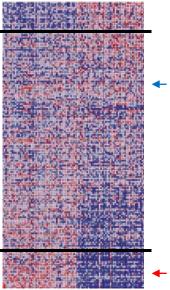


Trends in Biotechnology

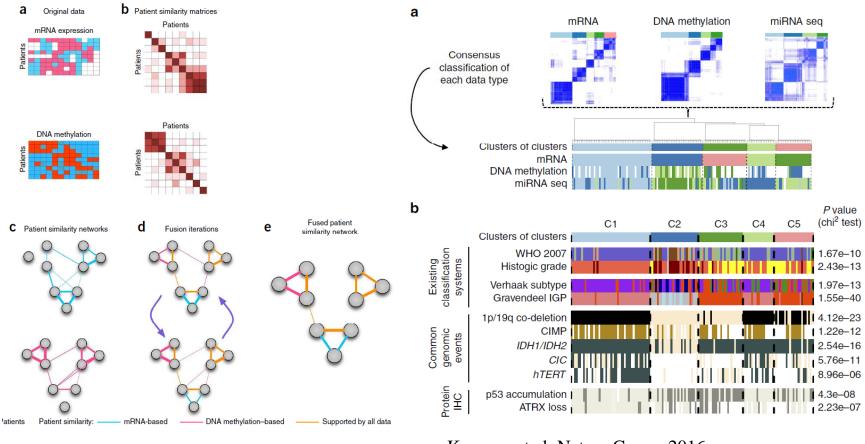
Gene Expression



Methylation



Multi-omics integration for Classification and Clustering



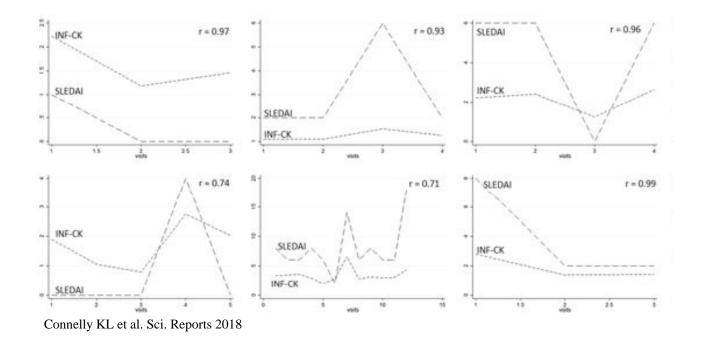
Wang et al. Nature Methods 2014

Kamoun et al. Nature Comm 2016

Cluster of clusters approach merges consensus clustering probability matrix to infer groups of sample with similar patterns across data types

SLE is an autoimmune diseases are characterized by immune responses to self antigens that result in tissue damage

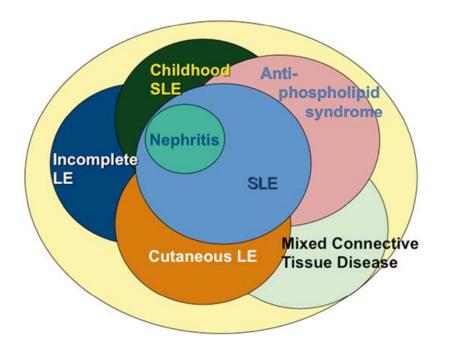
The disease course is unpredictable, with periods of remission and flares that lead to cumulative damage over time



Diagnosis is primarily clinical and remains challenging because of the heterogeneity of SLE

Only one drug (belimumab) has been approved for use in SLE in the past 60 years

Unlike in cancer, genetic traits do not seem to be generally useful as diagnostic biomarkers at present and there is an urgent need for better biomarkers and better treatments

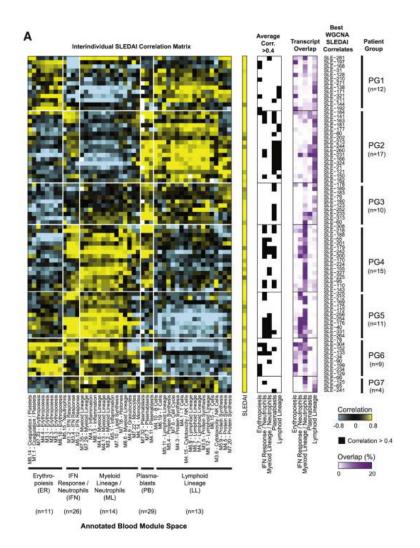


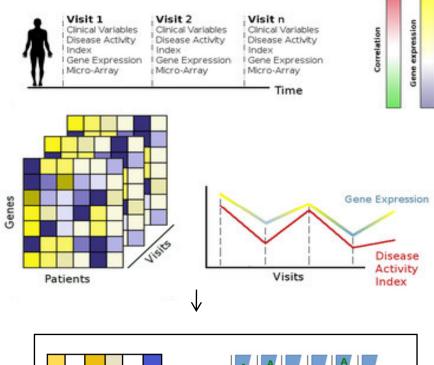
Published in final edited form as: Cell. 2016 April 21; 165(3): 551-565. doi:10.1016/j.cell.2016.03.008.

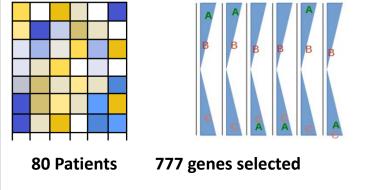
Personalized Immunomonitoring Uncovers Molecular Networks That Stratify Lupus Patients

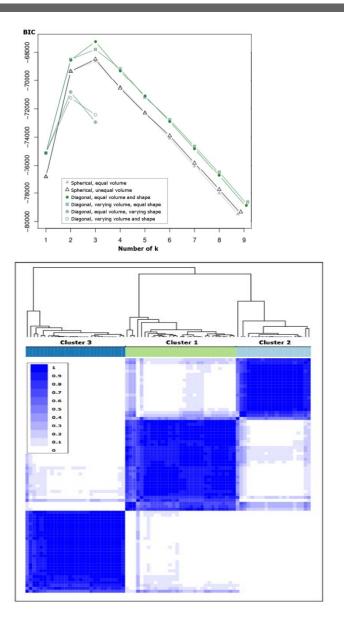
Romain Banchereau^{1,7}, Seunghee Hong^{1,7}, Brandi Cantarel¹, Nicole Baldwin¹, Jeanine Baisch¹, Michelle Edens¹, Alma-Martina Cepika¹, Peter Acs¹, Jacob Turner¹, Esperanza Anguiano¹, Parvathi Vinod¹, Shaheen Kahn², Gerlinde Obermoser¹, Derek Blankenship¹, Edward Wakeland², Lorien Nassi^{2,3}, Alisa Gotte^{2,3,4}, Marilynn Punaro^{2,3}, Yong-Jun Liu^{1,5}, Jacques Banchereau⁶, Jose Rossello-Urgell¹, Tracey Wright^{2,3}, and Virginia Pascual^{1,3,*} ¹Baylor Institute for Immunology Research, Dallas, TX 75204, USA

- ²UT Southwestern Medical Center, Dallas, TX 75235, USA
- ³Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
- ⁴Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- ⁵MedImmune, Gaithersburg, MD 20878, USA
- ⁶The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA









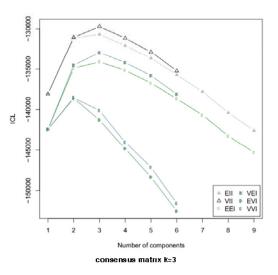
Two independent Datasets

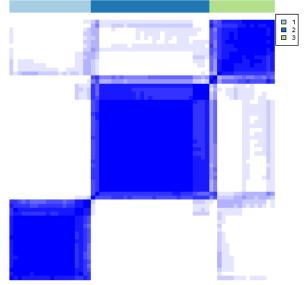
Dataset 1. Pediatric Patients

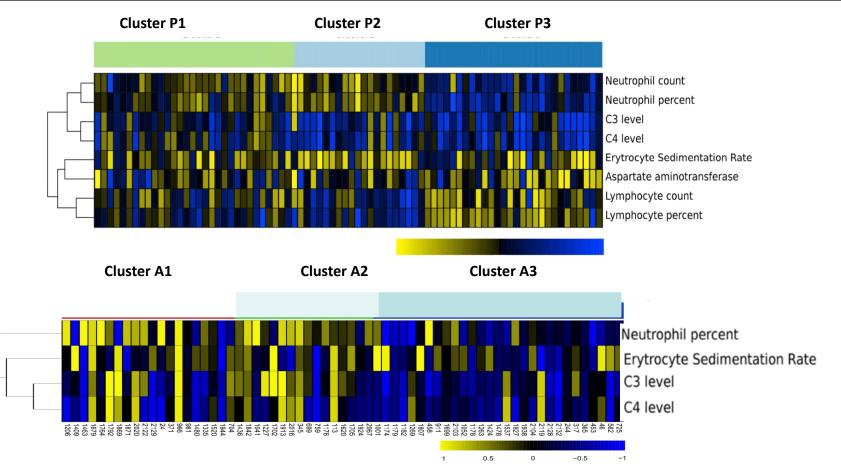
- Banchereau et al. Cell. 2016
- Longitudinal study with 158 patients and 46 Healthy Samples
- 997 samples in total
- Illumina GE Arrays

Dataset 2. Adult Patients

- Hopkins lupus cohort
- Longitudinal study with 301 patients and 20 Healthy Samples
- 747 samples in total
- Affymetrix GE Arrays





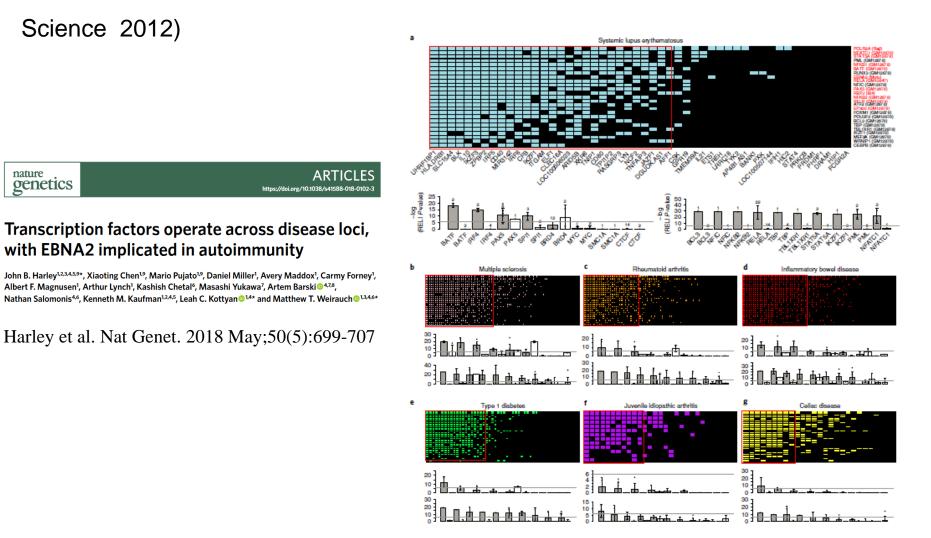


The percentage of neutrophils decreased with disease activity in cluster A3 and increased in clusters A2 and A1.

Toro-Domínguez D, et al. Longitudinal Stratification of Gene Expression Reveals Three SLE Groups of Disease Activity Progression. Arthritis Rheumatol. 2018

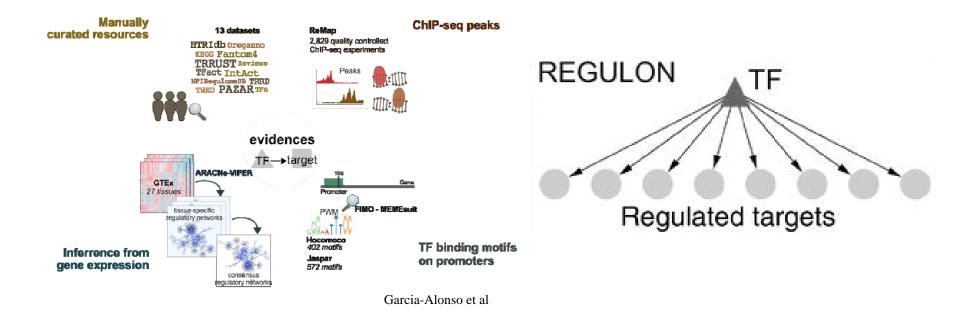
TF regulons

Most SLE loci occur in likely gene regulatory Regions (Maurano et al.

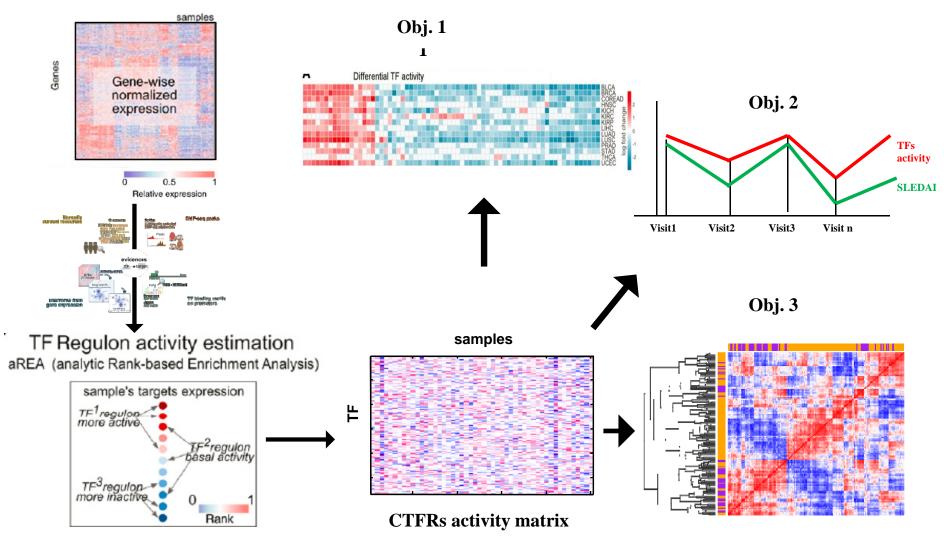


Activities of TF activities can be estimated computationally from the gene expression levels of their direct targets (the so-called TF regulon)

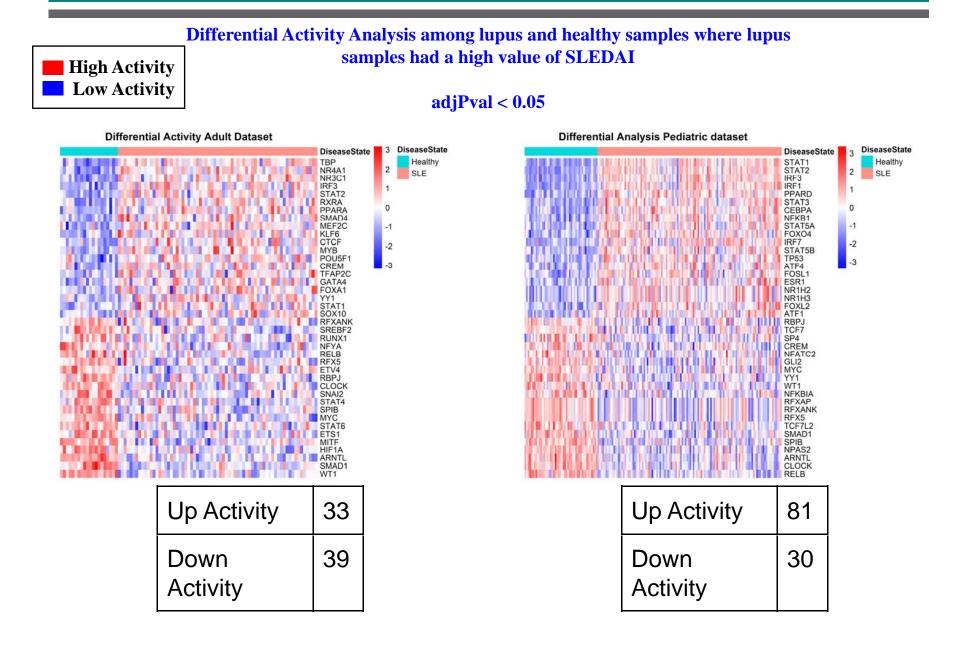
The assumption behind is that the level of protein activity of a TF is reflected on the transcript levels of its targeted genes



TF regulons



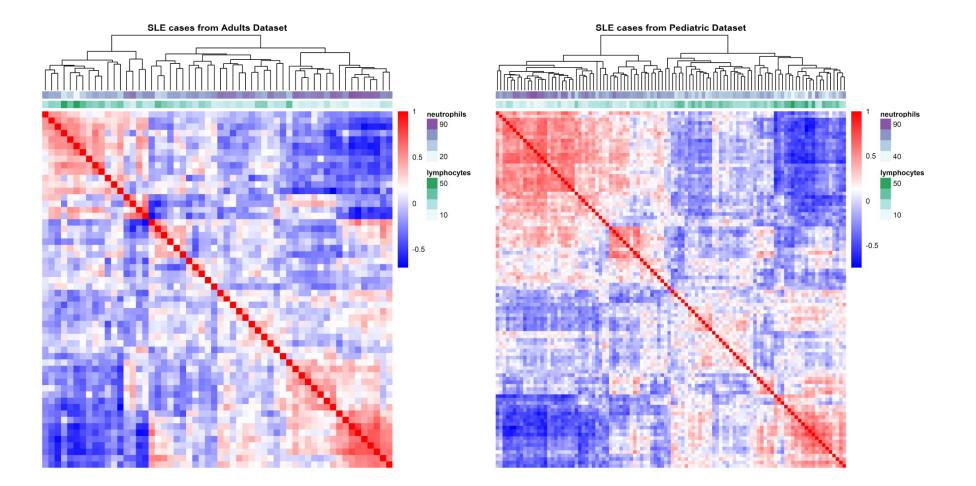
Adapted from Garcia-Alonso et al



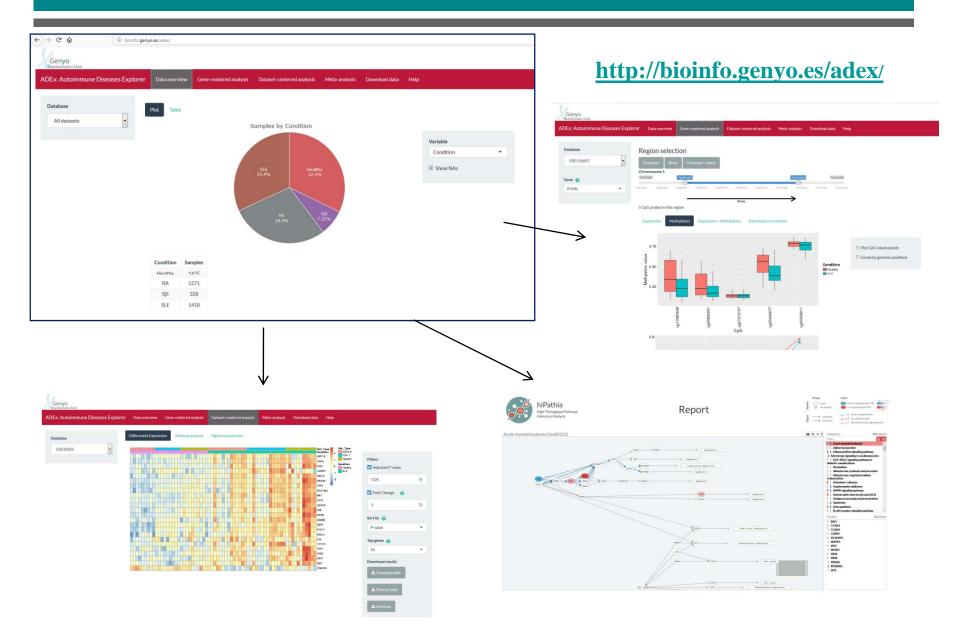
		Dataset	6			
**	**	MYC		Pediatric		
**	**	RFX5	4	Adults		
**	**	RFXANK				
**	**	RFXAP	2			
**	**	ARNTL				
**	**	SMAD1	0			-
**	**	WT1				Is
**	**	CLOCK	-2		Immune complex	G
**	**	RELB			processing	
**	**	SPIB	-4		• Clg • FcGR2A • CRP	
**	**	TCF7L2			• C2 • FCGR3A • ITGAM	
**	**	RBPJ	-6		* C4	
*	**	MITF	-0			
**	**	SREBF2				
*	**	CREB1			·HLA-DR	1
*	: *	ERG			•BANKI	
*	*	POU2F2			• TREXI • PTPN2	
*	*	ELK1			• TNFAIP3 • IRF5 • PCDCI	
**	**	GATA4			• IRAKI? • STATA • TNFSF	4
**	*	CEBPE			• STATP • PXK? • BLK	
**	**	POU5F1			• XKR6? • MECP.	2?/
**	**	CTCF			TLR and type I Immune signal	1
*	**	TFAP2C			IFN pathway transduction	
**	*	ATF1				
**	*	HNF1A				
**	**	SOX10				
**	**	MEF2C				
**	*	NR1H3				
**	**	E2F2				
**	**	FOXA1				
**	**	MYB				
**	*	FOXO4				
**	**	NR3C1				
**	**	SMAD4				
**	**	PPARD				
**	**	SP3				
**	**	IRF3				
**	*	IRF1				
**	**	STAT2				
	**	STAT1				

Isaac. Nature Reviews Genetics 2009

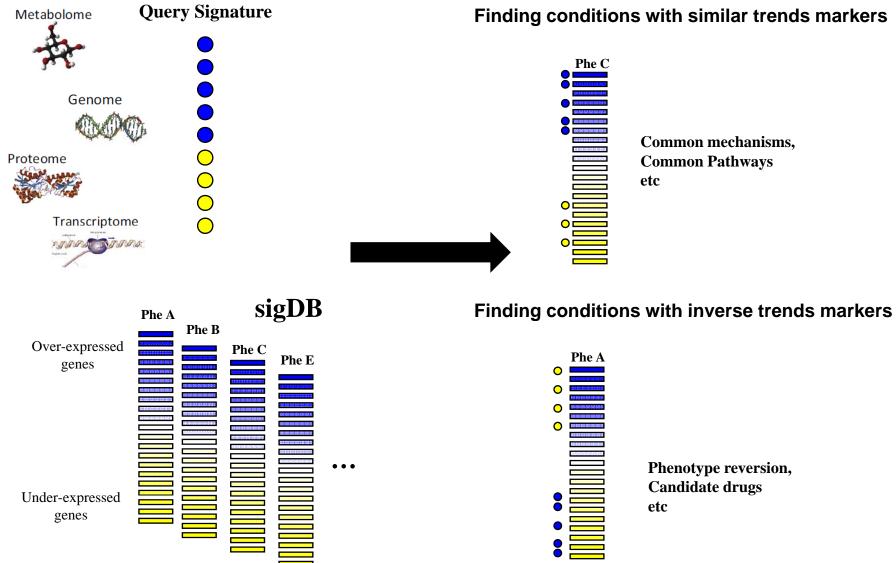
		Dataset	6	Da	taset	
**	**	MYC			Pediatric	
**	**	RFX5	4		Adults	Seguín-Estévez et al., 2009
**	**	RFXANK				5 G am 2007 C C U , 2007
**	**	RFXAP	2			CIITA TSS
**	**	ARNTL				
**	**	SMAD1	0			(RFX)CREB)NF-Y)
**	**	WT1				Pol II) MHCII
**	**	CLOCK	-2			
**	**	RELB			RFX5	U
**	**	SPIB	-4		RFXAP	enhanceosome
**	**	TCF7L2			RFXANK	$\overline{}$
**	**	RBPJ	-6		NI AANKL	-(RFX)CREB)NF-Y)
*	**	MITF	-0			
**	**	SREBF2				S-Y
*	**	CREB1				
*	*	ERG				
*	*	POU2F2				
±.	ـد	EL 174				



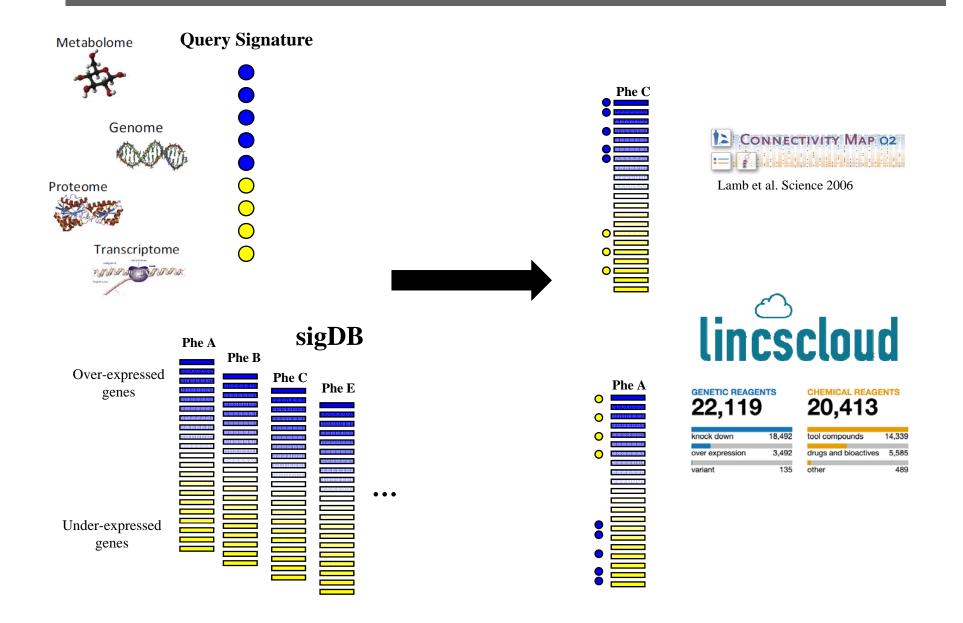
ADEx: Autoimmune Diseases Explorer



Integrating datasets: Connecting Phenotypes

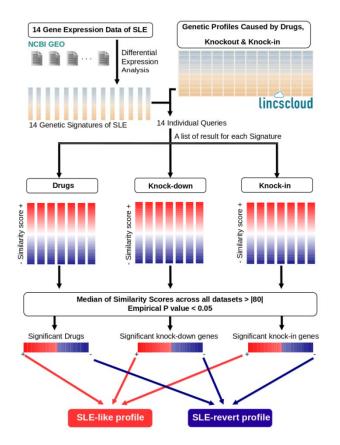


Integrating datasets: Connecting Phenotypes

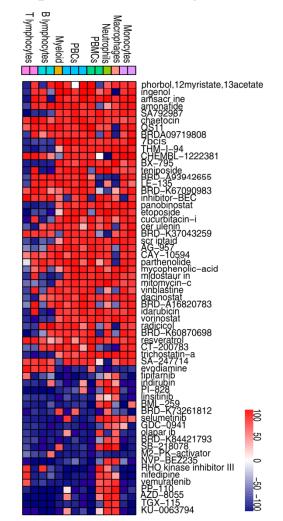


Drug repurposing in SLE

We queried Lincscloud to connect compounds and SLE signatures. We obtained a list of drugs, knock-in and knockout genes with significant similarity scores with respect to the SLE signatures



Toro-Domínguez et al. Support for phosphoinositol 3 kinase and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis. Arthritis Res Ther. 2017



Drug repurposing in SLE

	-	РІЗК	Inhibitor	PI828 - GDC0941 - NVP-BEZ235 PP110 - TGX115	4.915E-06
	-	mTOR	Inhibitor	NVP-BEZ235 - AZD8055 - TGX115 Ku0063794	1.792E-05
	-	CDK	Inhibitor	BML259 - Indirubin	1.463E-02
	-	IKBalfa	Inhibitor	Evodiamine	
	-	Farnesyltransferase	Inhibitor	Tipifarnib	
	-	IGF1R	Inhibitor	Linsitinib	
	-	MAP2K1	Inhibitor	Selumetinib	
	-	CHK1	Inhibitor	SB218078	
	-	Piruvate kinase	Inhibitor	M2PK Activator	
	-	Rho kinase	Inhibitor	Rho kinase inhibitor III	
	-	Voltage dependent calcium channel	Inhibitor	Nifedipine	
	-	Braf	Inhibitor	Vemurafenib	
-					

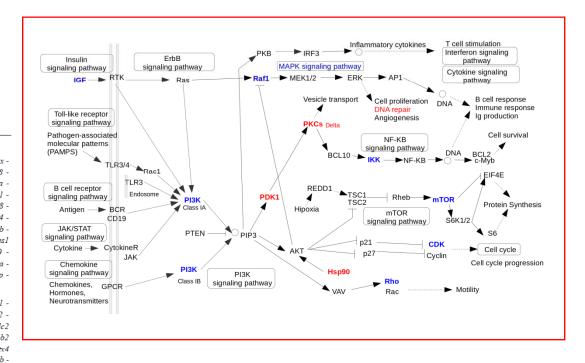
Table 3: Significant knock-down and knock-in genes obtained.

Tm9sf3

Score	Type of experiment	Genes
+	Knock-in	Ifinb1 - Ifng - Cd40 - Bcl10 - Klf6 - Lyn - Tyrap
+	Knock-down	Clcn3 - Ppp1r14b - Lmnb2 - Tbx2 - Pmm2 - Myc - Atpövlf - Max Pepd - Puf60 - Phb2 - Akr1a1 - Big1 - Abhd2 - Tfdp1 - Pax8 Fosl2 - Nt5e - Rrm1 - Nr2f6 - Ramp1 - Ryk - Cish - Ppp2r1a Cd14 - Ufd11 - Htra1 - Slc35a1 - Twf2 - Nnt - Homer2 - Hs2st1 Znf768 - Ggt1 - Dffb - Hspa2 - Prkdc - Arpc5 - Nfkbia - Slc39a8 - Thap11 - Gstp1 - Lftv1 - Gcat - Kiaa0907 - Dtx3 - Elk1 - Pias4 Meox2 - Gper - Nras - Tceb3c - Kif2c - Polr2f - Ctbp2 - Chaf1b Cep55 - Hook2 - Znf8 - Ndufb7 - Nisch - Hoxc10 - Aqp12a - Yes1 - Psmd5 - Jag1 - Mdh2 - Polr2i - Ddf1 - Hras - Hdac10 - Slc25a14 - Med7 - Hmgcr - Pdxp - Fdx1 -Nipb1 - Prkag3 - Ppia Eif2ak3 - B4galt1 - Uck2 - Jun - Med4 - Ybx1 - Bub1b - Crep -
-	Knock-down	Mitf - Etfa - Pip4k2b - Vrk2 - Spen - Nsdhl - Znf586 - Gnpdal Six4 - Parn - Dusp14 - Iqgap1 - Lrrk2 - Gpr123 - Sf1 - Fez2 - Ipmk - Satl - Elf4 - Rptor - Eif4e - Arl3 - Kars - Csnk1a1 - Spt1c2 - Men1 - Snx17 - Vegfc - Ppp3ca - Bnip3 - Erbb3 - Ero11 - Copb2 - Serpinc1 - Ak4 - Hla_a (Pik3ca) - Pik3c2a) Igf2r - Lypla1 - Srx4 - Atm - Espl1 - Igf1r - St3gat1 (Mtor)Grn - Hsp90aa1 - Prpf4b

Toro-Domínguez et al. Support for phosphoinositol 3 kinase and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis. Arthritis Res Ther. 2017

PI3K molecular signaling pathway



PLOS MEDICINE Q Browse Publish About Search advanced search OPEN ACCESS 68,836 3,556 ESSAY Save Citation Why Most Published Research Findings Are False 2,605,883 10,479 John P. A. Ioannidis View Share Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed.0020124 Metrics Article Authors Download PDF Print Share Abstract Check for updates Modeling the Framework Abstract for False Positive Findings **Related PLOS Articles** Summary Bias Why Current Publication There is increasing concern that most current published research findings are false. The Testing by Several Practices May Distort probability that a research claim is true may depend on study power and bias, the number of Independent Teams Science other studies on the same question, and, importantly, the ratio of true to no relationships Corollaries among the relationships probed in each scientific field. In this framework, a research finding is Why Most Published less likely to be true when the studies conducted in a field are smaller; when effect sizes are Most Research Findings Research Findings Are smaller; when there is a greater number and lesser preselection of tested relationships; where Are False for Most False: Author's Reply to there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there Research Designs and for Goodman and Greenland is greater financial and other interest and prejudice: and when more teams are involved in a Most Fields scientific field in chase of statistical significance. Simulations show that for most study designs Why Most Published Claimed Research and settings, it is more likely for a research claim to be false than true. Moreover, for many Research Findings Are Findings May Often Be current scientific fields, claimed research findings may often be simply accurate measures of False: Problems in the Simply Accurate the prevailing bias. In this essay, I discuss the implications of these problems for the conduct Analysis Measures of the and interpretation of research. Prevailing Bias Most Published Research

John P. A. Ioannidis

Professor of Medicine, <u>Stanford University</u> (previously at U loannina, Greece) Verified email at stanford.edu - <u>Homepage</u>

Evidence-based medicine research methods meta-analysis clinical epidemiology genetic epidemiology

Cited by		VIEW ALL
	All	Since 2013
Citations	181686	132586
h-index	173	131
i10-index	794	674

MetaGenyo: Meta-Analysis of Genetic Association Studies

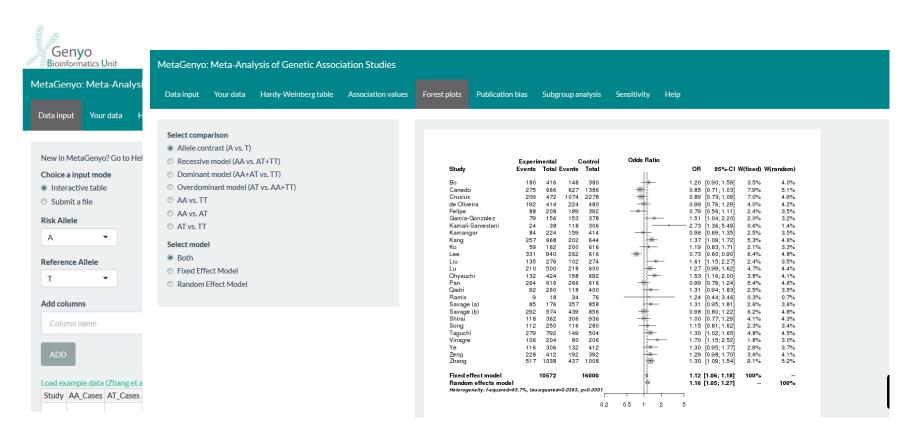
http://bioinfo.genyo.es/metagenyo/

G	enyo nformatics	Jnit									
MetaG	enyo: Met	a-Analys	is of Gen	etic Associa	ation Studie	'S					
Data ir	nput You	r data H	Hardy-Weir	nberg table	Association v	alues Fore	est plots	Publication bias	Subgroup analysis	Sensitivity	Help
Newi	n MetaGenyo	o? Go to He	lp tab.								
Choic Int	e a input mo eractive tabl omit a file	de									
Risk A		•									
Refer	ence Allele										
Т		•									
	olumns umn name										
AD	D										
	example data										
Stud	AA_Cases	AT_Cases	TT_Cases	AA_Controls	AT_Controls	TT_Controls					

Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P. *MetaGenyo: A web tool for meta-analysis of genetic association studies*. **BMC Bioinformatics. 2017**

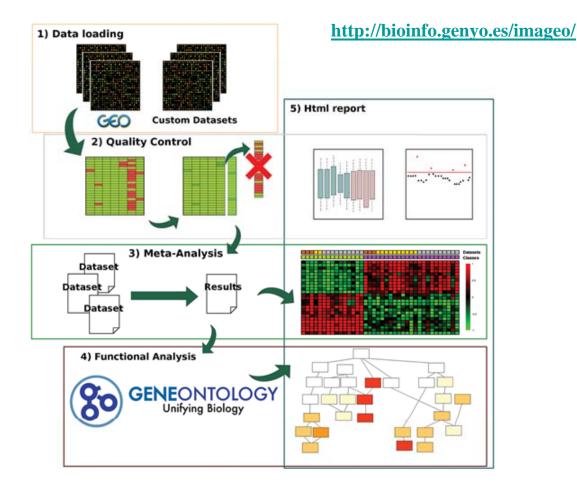
MetaGenyo: Meta-Analysis of Genetic Association Studies

http://bioinfo.genyo.es/metagenyo/



Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P. *MetaGenyo: A web tool for meta-analysis of genetic association studies*. **BMC Bioinformatics. 2017**

IMAGEO : Integrative Meta-Analysis from GEO Data



D. Toro-Domínguez, J. Martorell-Marugán, R. López-Dominguez, A. García-Moreno, V. González-Rumayor, M. E Alarcón-Riquelme, P. Carmona-Sáez. *ImaGEO: Integrative Gene Expression Meta-Analysis from GEO database*. Bioinformatics 2018

IMAGEO: Integrative Meta-Analysis from GEO Data

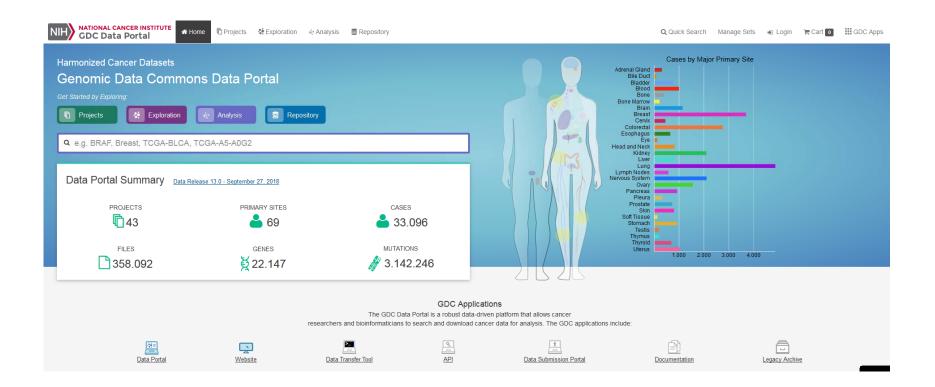
Integrative processpreasion Meta-Analysis from CEO database	Genyo Bioinformatics Unit		<u>htt</u>	p:/ /	/bic	oinfo.
naGEO: Integrative Meta-Analysis of GEO Data	1: Data Input Step 2: Assign samples to each group Report Help					
Input Enter GEO IDs (one ID per line, maximum 10) Load examples	Adjusted P-value threshold	10 0,05	0			
and/or upload your own data Inly tab-separated files (.bxt and .tsv) are admitted Inly tab-separated file (GPL570) Browse	Group 2 name	Controls Cases		•		
	Email				0	
	Submit Reset					

If you use ImaGEO, please include this reference:

D. Toro-Domínguez, J. Martorell-Marugán, R. López-Dominguez, A. García-Moreno, V. González-Rumayor, M. E Alarcón-Riquelme, P. Carmona-Sáez. *ImaGEO: Integrative Gene Expression Meta-Analysis from GEO database*. Bioinformatics 2018

WE NEED LONG TERM INITIATIVES

SUSTAINABLE RESEARCH



Bioinformatics Week in Granada

http://jbi2018.ugr.es/

http://oncothon.ptsgranada.com/

Dr. Pedro Carmona

Jordi Martorell

Daniel Toro

Raúl López

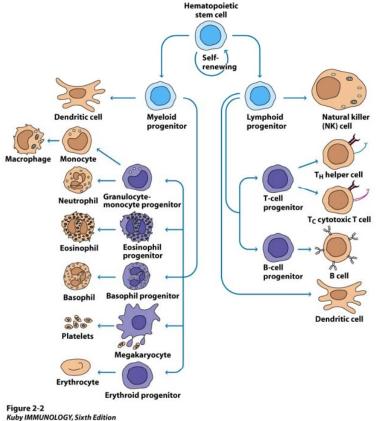
Adrian García

Dr. Marta Alarcon. GENyO Dr. Julio Saez-Rodriguez. U. of Heidelberg Dr. Michelle Petri. Johns Hopkins Lupus Center

Dr. Joaquín Dopazo. Bioinformatics Area. FPS

The problem: Characterization of Gen2.2

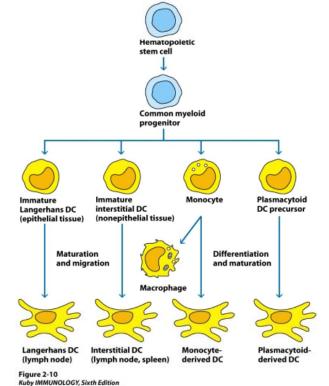
Denditric Cells are antigen presenting cells with a key role in the immune response



© 2007 W.H.Freeman and Company

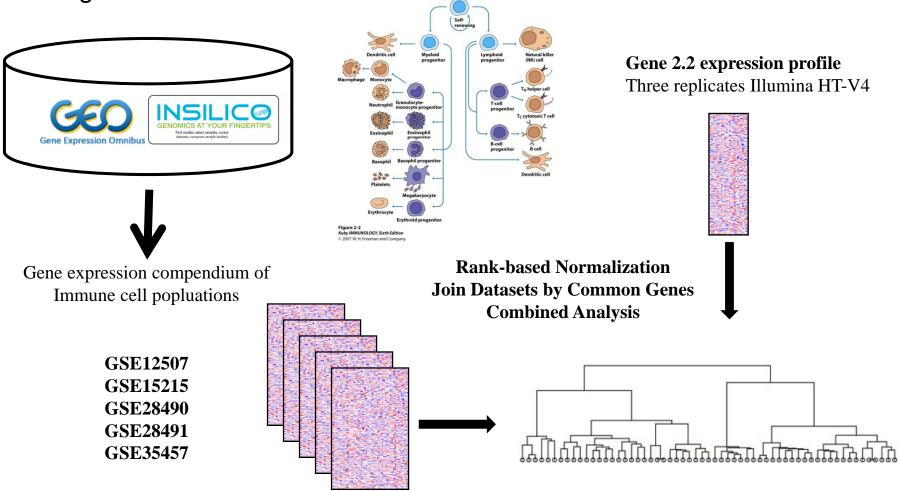
Various DC precursors, such as DC1 (myeloid origin) or plasmacytoid dendritic cells (**pDCs**).

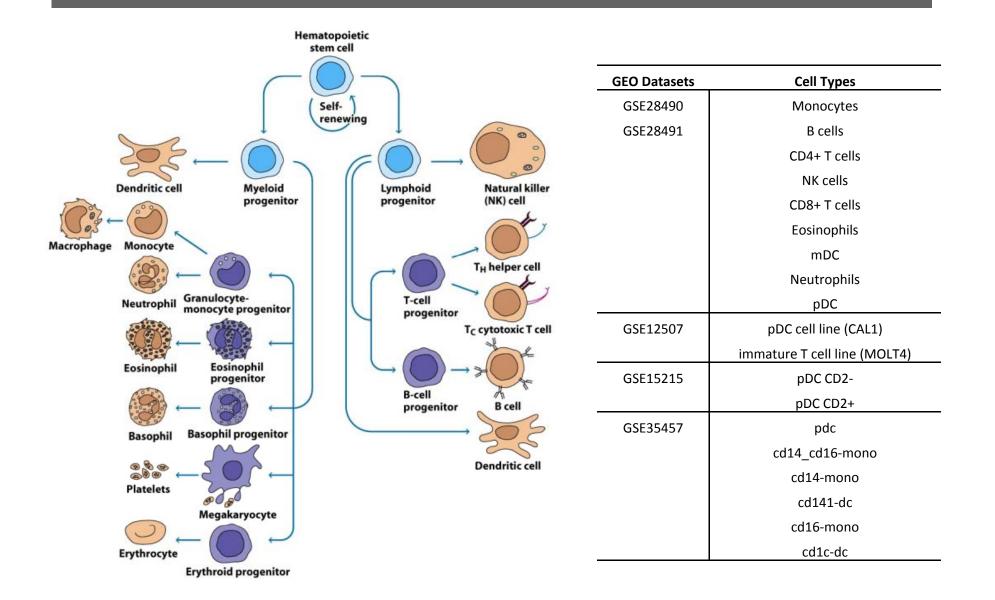
pDC are difficult to isolate (less than 0.5% of the circulating cells). Therefore, good cells models are required

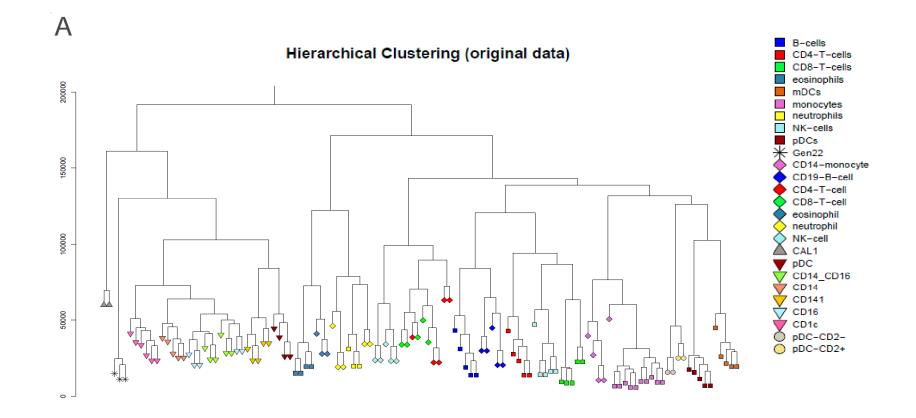


© 2007 W.H.Freeman and Company

Compare gene expression profiles of Gen2.2 with previously published immune system gene expression datasets to get insights into similarities among cell lines

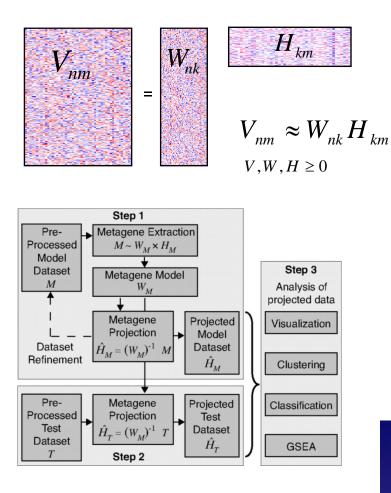


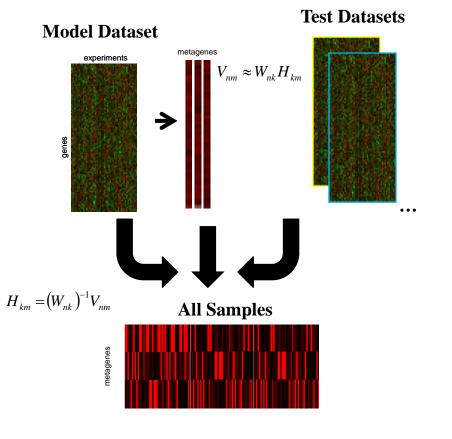




Carmona-Sáez P, et al. Metagene projection characterizes GEN2.2 and CAL-1 as relevant human plasmacytoid dendritic cell models. **Bioinformatics. 2017**

 \mathbb{Z}



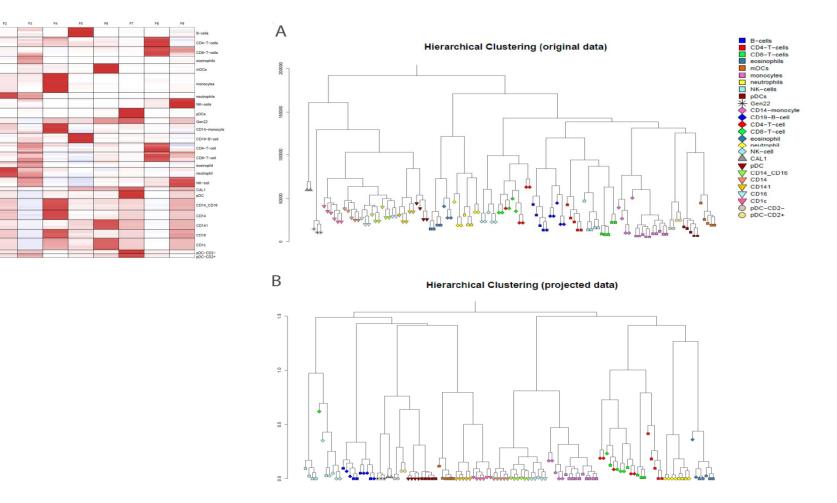


Metagene projection for cross-platform, cross-species characterization of global transcriptional states

Pablo Tamayo*, Daniel Scanfeld*, Benjamin L. Ebert*, Michael A. Gillette*†, Charles W. M. Roberts*, and Jill P. Mesirov*5

*Eli and Edythe L. Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02141; ¹Pulmonary and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114; and ¹Department of Pediatric Oncology, Dana–Farber Cancer Institute, Boston, MA 02115

Communicated by Edward M. Scolnick, The Broad Institute, Cambridge, MA, February 6, 2007 (received for review December 7, 2006)



Carmona-Sáez P, et al. Metagene projection characterizes GEN2.2 and CAL-1 as relevant human plasmacytoid dendritic cell models. **Bioinformatics. 2017**