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Internet of Things (IoT): an Introduction
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– Term coined by Kevin Ashton in 1999.

– Interconnection of objects to computers with self-configuring capabilities

– Main enablers:

• sensors and actuators embedded in

physical objects

• RFID and sensor technology enable 

computers to observe, identify and 

understand the world

– Drivers:

• things-to-things communications

• integration of things data with applications
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Low-cost Sensors are becoming prevalent
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Environment sensors

Utility consumption sensors

Dynamic Tags



More parts of life are getting connected…
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Cities

Public transport

Consumer goods

Smart Homes

Image courtesy: 1. Exigent Networks; www.exigentnetworks.ie
2. SmartCitiesCouncil

http://www.exigentnetworks.ie/


IoT Drivers
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From IoT to the Web of Things (WoT)

– Connecting “Things” to the Web for:

• access

• description and discovery

• resource directories

• security

– Typical connectivity solutions:

• Constrained Application Protocol (CoAP)

• Lightweight HTTP
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IoT in numbers…

Friday, 03 November 2017 9

Image courtesy: Exigent Networks; www.exigentnetworks.ie

http://www.exigentnetworks.ie/


IoT: the case for a Data Perspective

– Abstractions of high-dimensional, high-volume data generated by 
heterogeneous devices

– Associate data with context information

– Data fusion through application of data analytics and reasoning techniques

– Example Applications:

• Analyse road, environment (pollution) conditions with real-time location 
information (proximity) to recommend events and venues

• Adjust traffic signal timings based on vehicle and cyclist arrival data

• Efficient waste management using FMCG (fast moving consumer 
packaged goods) lifecyle information from smart tags
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Challenges in IoT realization

– Many devices do not speak the same

language and cannot exchange data across 

different gateways and smart hubs

– Things’ data may have a defined structure in a known 

format, e.g. JSON, CSV, XML

– But data models adopted are different and not compatible

– Different units and context representation

Interoperability Challenge
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The Data Lifecycle

– Data Collection

• Identification and connection to data sources

• Physical and social world data sources

• Data virtualisation

– Data modelling

– Schema adaptors

– Data Management

• Data indexing

• Metadata, data storage and retrieval

– Data Processing

• Missing data estimation

• Redundancy filtering, pre-sorting…

– Data Analysis

• Reasoning mechanisms

• Data fusion

– Applications
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Data Sources
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Data Source taxonomy

– Physical sensor deployments

• Fixed Sensing

• Mobile sensor nodes

– Mobile crowd sensing

• Participatory sensing

• Online social networks
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Data Sources

Physical Sensor 
Deployments

Mobile Crowd 
Sensing

Participatory 
Sensing

Online Social 
Networks

Fixed Sensing Mobile Sensing



Physical Sensor Deployments

– Fixed Sensing

• Fixed installations – static location configuration of deployed sensors

• O&M data ~ continuous time series, resolution dependent upon sampling rate

• Typical deployments in urban areas, smart homes, ITS solutions

• Structured data, typically in JSON/CSV/XML formats

• Examples:

• London Air Quality Network (www.londonair.org.uk/London)

– Air pollution sensors: CO, NO2, O3, PM10, PM2.5, SO2

– Data sampled every 15 minutes

– 4 location types: roadside, suburban, urban background, industrial

– APIs for accessing data in XML or  JSON; historical downloads in CSV

• Smart Santander (http://maps.smartsantander.eu/)

– Environmental monitoring: temperature, CO, noise, light

– Traffic monitoring: traffic volume, road occupancy, vehicle speed, queue length

– Agriculture monitoring: moisture, temperature, humidity…

• Water Distribution Networks…
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Physical Sensor Deployments (2)

– Mobile Sensing

• O&M data ~ typically frequently updated, timestamped and structured (FUTS) data

• Each sampling data point associated with a distinct location tag

• Data typically accessible in a known structured format

• Not obtained at successive, equally-spaced time points
• Typical deployments for urban monitoring 

• Opportunity for large-scale environmental monitoring

• Structured data, typically in JSON/CSV/XML formats

• Examples:

– Smart Santander 
» http://maps.smartsantander.eu/

» Sensors attached to public 

vehicles
» Environmental monitoring: 

» temperature, CO, noise, light

– Madrid

» Pollen sensors on public buses
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Mobile crowd sensing

– Participatory Sensing

• Smartphone accompanied citizens forming sensing networks for local 
knowledge gathering

• Involves explicit participation

• Made possible through dedicated apps or hardware carried by citizens

• Examples:

– Congested road and traffic incident detection

» Arduino boards in cars: speed and position of the car

» Environmental monitoring: temperature, CO, noise, light

– Melbourne: noise heatmaps of city

» Complement noise data from fixed sensors, perceptions of noise 
and urban sounds
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Mobile crowd sensing (2)

– Online social networks

• Immediacy of social network messages: rich source of city-information

• Data amenable to mining

• Can provide semantic context to physical sensing data

• Examples:

– Twitter

» 140 character tweets

» Wide adoption – 500 million users worldwide

» Both streaming and RESTful API

» User perception of pollution, representation term mining for traffic incidents

– Foursquare

» Location-based social network

» Users check-in to a venue

» Data: time, type, user details, venue details (name, location, category)

» Modality and format allows direct manipulation through statistical methods and 
integration with (numeric) physical sensing data
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Data Modelling
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Semantics for IoT Resources, data

– Semantics: machine-processible metadata (tagging)

– Semantic languages

• Web Ontology Language (OWL), Resource Description Framework (RDF)

– Structured, common platform for Things and data representation [Data Modelling]

– Achieving: ontologies for IoT “Things”

• Resource model

– Gateway, sensors, processing resources

• Entity model

– Physical world objects 

– Features of interest for each entity

• Service model

– IoT services and interfaces

• Observation and Measurment (O&M) data

– Machine interpretation of relationships and hierarchies

Friday, 03 November 2017 20

Image ref: Jara et al. Semantic web of things: An analysis of the application semantics for the iot 
moving towards the iot convergence. Int. J. Web Grid Serv., 10(2/3):244–272, April 2014



Role of Metadata

– Semantic tagging

– Machine-interpretable data annotation and resource descriptions

– Re-usable ontologies

– Resource description framework(s)

– Structured data, structured query
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Metadata and Semantics

– To describe:

• Content

• Context

• Resources 

• Entities and features of interest

– To create:

• Perception

• Situation awareness

– To support

• Automated processes for management of resources and decision 
making
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Entity Model
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Refer to publication [1] for details



Entity Model Instance
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Resource Model and instance
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IoT Service model
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Profile Model Grounding



IoT Service model: Profile
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IoT Service model: Grounding
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IoT Service model Instance
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Refer to publication [3] for details



IoT Models: Summary

– Distinct repositories for metadata and 

data

– Metadata

• Less frequency of update

– Data

• frequently updated, timestamped 

and structured

• not obtained at successive, 

equally-spaced time points
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Data Storage and Retrieval
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Data Indexing, Storage, and Retrieval Framework
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– Data Parser

• Parse and transform from 
JSON, CSV, or other data

– Data Record Mapping

• Map parsed data to 
format defined by 
Ontology Schema

– Spatial Indexing Component

• Geohash-Grid Tree

• Index spatial parameters 
of data records

– Time-Series Database (InfluxDB)

• Store O&M data
D
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Refer to publication [6] for details.



Data Indexing, Storage, and Retrieval Framework
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– Data Records

• a data record is a 5-tuple of the 

form [<object-id>, [<tag-

key>=<tag-value>…(0..n)], 

[<field-key>=<field-

value>…(1..n)], <geohash>, 

<unix-nano-timestamp>]

– Considered Query

• A query asking for observation 

and measurement (O&M) data 

based on spatial and temporal 

constraints



A Brief Overview of Geohash

34

Latitude and Longitude

– 40.8, -74.0
Binary/decimal representation

– 01100 10111 00101 10111 11010
– 12    23     5    23    26

Geohash string

– dr5ru

[1] Geohash. Available: http://en.wikipedia.org/wiki/Geohash
[2] Paule. (2013). Visualizing Geohash. Available: http://www.bigdatamodeling.org/2013/01/intuitive-geohash.html



Data Parsing and Mapping
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{ "id": "3021",
"latitude": "43.430007",
"longitude": "-3.949993",
"title": "bus3021",
"image": 

"http://lira.tlmat.unican.es/SmartSantander/iconos/tus.png",
"content": "<div class='googft-info-window'\n     style='font-

family: sans-serif; font-size: 10px;width: 200px; height: 18em ; 
overflow-y: auto;'><table width='100%' border='0'>\n  <tr>\n    
<td valign='top'>
<h2 style='color: #5080e1'>NODE 3021</h2>Last update: 2015-

01-02 17:33:19<br>Particles: 0.89 mg/m3<br>Humidity: 64.00%
</td>\n    <td valign='top'></td>\n  </tr>\n</table></div>",
"tags": "BUS"}

{...}

Indexing Component

Raw data from SmartSantander (JSON)

InfluxDB

Parse

eztpn45wn

Database Measurement Tag-key Tag-value Field-key Field-value

mydb vo_3021 geohash eztpn45wn humidity 0.64

mydb

vo_3021

geohash particles humidity time latitude longitude

eztpn45wn 0.89 0.64 1420219999s 43.430007 -3.949993

… … … … … …

InfluxDB Storage Mechanism



Spatial Index: Geohash-Grid Tree

– Node 

• Geohash string

• Spatial grid (2 pairs of {latitude, longitude})

• A list of stored VO_IDs (leaf node)

– Features

• Unbalanced tree

• Fixed height

• Insertion without changing existing tree structure

• No need to split node
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Data Retrieval Components and Steps
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– Query Interface

• Get query

– Query Analysis

• Analyze query 

• Send request with spatial constraints to 
indexing component to get matched IDs

– Query Rewriting

• Rewrite query with matched IDs and 
other constraints

– Results Refinement

• Refine returned data from database into 
a proper format for display on query 
interface



Spatial Index: Performance measurements
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Geohash-Grid Tree Comparing to R Tree

– Insertion does not change existing tree structure

– Fast indexing creation time

– Better query response time in dense areas
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Spatial Indexing and Retrieval: Performance measurements
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Data Analysis
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Case Study I: Smart Campus – IoT 

testbed
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Semantic Reasoning for Association Analysis
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– Associations along thematic-spatial-temporal axes

• Thematic (feature) match – utilising domain 
ontologies that capture virtual entity’s attributes 
and IoT Service’s input/output parameter

• Spatial match – utilising location ontologies that 

model logical locations with properties such as 

‘contains’ 

• Temporal match – utilising temporal aspects of 

entities which have a temporal aspect, such as 

meeting rooms with the IoT Service’s 

observation_schedule

– Dynamic association inference through

• Rules that incrementally reason on feature, spatial aspects 

and time

– Provision for semantic queries on derived 

associations

Spatial, temporal and 

thematic association

Domain ontologies and 

Rules

       

          Entity of Interest

  IoT Service

Refer to publication [2] for details.



Smart Campus
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– Driven with semantic models describing

• Entities

• Campus buildings, floors and rooms 

• Location model capturing indoor locations

• Rooms, corridoors etc. with their 

proximity, containment relationships

• Resources

• Temperature, light sensors

• IoT services

• Access interface to IoT resources and 

their O&M data

– Dynamic thematic-spatial-temporal association 

inference

Processing and Storage

Association Manager

Resources

Semantic
Models

Triple Store

Association
rules

Knowledge
sharing

rules

Knowledge propagation

Semantic
resource

repository

Association
repository

Selected
Nodes

Shared association results

Triple Store update

Rule Manager
Results 

Dispatcher

Rule Engine
Geolocation

Mapper

Refer to publication [2] for details.



Smart Campus: SWRL rules for thematic-spatial associations
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Rule-1:

srv:Service(?s) ∧ srv:hasOutput(?s, ?out) ∧ em:Entity(?et) ∧ em:hasA(?et, ?da) ∧
em:hasAttributeType(?da, ?atype) ˚ sqwrl:makeSet(?sr, ?out) ∧
sqwrl:groupBy(?sr, ?s) ∧ sqwrl:makeSet(?se, ?atype) ∧ sqwrl:groupBy(?se, ?et) ˚ 
sqwrl:intersection(?in, ?sr, ?se) ∧ sqwrl:size(?n, ?in)   ∧ swrlb:greaterThan(?n, 0) 
→ assoc:sameFeatureAs(?s, ?et)

Rule-2:

assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧
em:hasA(?et, ?l) ∧ em:hasLocalLocation(?l, ?loc) ˚ sqwrl:makeSet(?rsa, ?sa) ∧
sqwrl:groupBy(?rsa, ?s) ∧ sqwrl:makeSet(?eloc, ?loc) ∧ sqwrl:groupBy(?eloc, 
?et) ˚ 

sqwrl:intersection(?in, ?rsa, ?eloc) ∧ sqwrl:size(?n, ?in)   ∧
swrlb:greaterThan(?n, 0) → assoc:isAssociatedWith(?s, ?et)

Rule-3:

assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧
em:hasA(?et, ?l) ∧ em:hasLocalLocation(?l, ?loc) ∧ loc:givesAccessTo(?sa, ?loc)  
→ assoc:isAssociatedWith(?s, ?et)

Rule-4:

assoc:sameFeatureAs(?s, ?et) ∧ srv:hasServiceArea(?s, ?sa) ∧ em:Entity(?et) ∧
em:hasA(?et, ?l) ∧ em:hasLocalLocation(?l, ?loc) ∧ loc:isAdjacentTo(?sa, ?loc)  
→ assoc:isAssociatedWith(?s, ?et)

Refer to publication [2] for details.



Smart Campus: Online platform

Friday, 03 November 2017 45

Ref: T. Elsaleh et al. Sense2Web Linked Data Platform; http://iot.ee.surrey.ac.uk/s2w/. Details in reference [1] 

http://iot.ee.surrey.ac.uk/s2w/


Smart Campus: Meeting venue guidance
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Case Study II: Recycling FMCG
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Semantic modelling of Smart tags
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– Smart tags for:

– Ice cream packaging

• QR code

– Unique identifier for each ice cream

• Time temperature indicator (TTI) label 

• indicator of the quality of the ice cream 

based on its cold chain

• irreversible thermochromic ink that will 

change its colour after exposure to a 

temperature above -10 C° for more than 

30 minutes



Semantic modelling of Smart tags
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– Representation of both 

• printed electronics (e.g. NFC) and 

• passive printed 2D tags such as datamatrix and QR codes (encoded using 
dynamic inks)

– that can be read by scanners

– Semantic model for SmartTags capturing:

• reactions to chemical/physical conditions [e.g. Inks could be thermochromic, 
hydrochromic or fluorescent visible/invisible, i.e. they ‘reactTo’ 
temperature/humidity/light within defined ranges]

• reaction state (reversible/permanent)

• status (activated/expired/not-expired)

• links to required decoding mechanism

• links to recorded measurements, including context data (location, time etc.)



Semantic Analysis for FMCG
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– System provides point-of-recycling information 
for every consumer packaged good (CPG)

– Allows tracking of the FMCG lifecycle

– Enables cold chain visible quality indicator

– Semantic modelling can enable:

• Detection of erroneous QR code scan 
measurements

• Generic, enhanced recommendations on 
(nearest and relevant) recycling points



Case Study III: Cyber-Physical-Social 

(CPS) data analysis, fusion
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CPS Data Fusion
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– Social data source:
• Recorded Foursquare check-ins in Patras, 

Greece for 3 months
– 100 Days between July to September 2012
– Created a grid of “listening posts” that sampled 

foursquare API every 30 minutes
– Each listening post queries API to retrieve 

names of businesses within their range, current 
check-ins and total check-ins. From this data 
the number of users who checked-in within the 
last 30 minutes can be calculated

– 282 venues recorded of which 249 checked into
– Average of 145.82 Check-ins per day

– Physical world data: Traffic and Air Quality
• Network of 29 stations where measurements 

taken
• Blue stations where traffic measurements taken 

over single 24-hour period, Pink stations where 
traffic measurements taken over 7 day period

• X marks the air quality monitoring station. 
• Air pollution measurements provided by the 

public repository of the Hellenic Ministry of 
Environment, Energy and Climate Change

Refer to publication [7] for details.
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Correlated Air Quality (NO and CO) and Traffic data during a single 24 hour period (2 
stations were over 1 week) with Foursquare check-in data
Correlation found between diurnal Foursquare check-ins, traffic volume, NOx and CO 
pollutants
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– Multilevel categories of check-ins used 
to better understand peoples diurnal 
patterns

• was used to compare activity 
popularity, activity times and 
compare venues

• only a few venues take up the 
majority of checkins (Top 20% of 
venues take up 69.2% of checkins).
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– Foursquare check-ins recorded in 
London and New York

• >2 months in 2016; 39414 check-ins 
(London) and 98726 (NY)

• Unique users:

– NY – 7363

– London – 4417

• Venues:

– NY – 25100

– London – 10853

Acknowledgement: Alex Grace, “Analysing Social Network Data to Reveal
City Demographics: Mining Social Networks For A City’s Typical Diurnal
Movement Patterns”, BEng final year project report, University of Surrey, 2017. Heatmap of Foursquare venues in London



CPS Data Analysis: City Rhythms

Friday, 03 November 2017 56

5125

5131

5137

5143

5149

5155

5161
5167
5173

0

500

1000

1500

2000

2500

3000

-55-53-51-49-47-45-43-41-39-37-35-33-31-29-27-25-23-21-19-17-15-13-11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
o

o
rd

in
at

e
 L

at
it

u
d

e
 (

x1
0

0
)

U
n

iq
u

e
 U

se
r 

C
o

u
n

t

Coordinate Longitude (x100)

London Unique Users

0-500 500-1000 1000-1500 1500-2000 2000-2500 2500-3000
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Smart thermostat
Smart lighting
Assisted Living

Noise heatmaps 
Characterisation of urban 
neighbourhoods
Event/venue recommendations
Event detection
Electric vehicle charging

Smart traffic lights
Smart parking meters
Individual trip planning

Pollution mapping and 
monitoring
Sentiment analysis –
environment conditions

Refer to publication [5] for details.
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– Cross-space data fusion: 

• Mobile crowd sensed and physical sensor data are multimodal and in 
different scales of measure

• Physical sensor data in interval or ratio scale

• Open datasets in nominal scale (qualitative classifications)

– Need intelligent methods to convert mobile crowd sensed data into ratio 
scale for efficient integration with physical sensor data

– Reasoning methods: typically deductive

• Extend to probabilistic reasoning to handle uncertain situations

• Learning in dynamic or evolving environments

– Detect changes in environment to trigger adaptive strategies
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