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Motivation

The experimental analysis on the 
performance of a new method is a crucial 
and necessary task to carry out in a research.and necessary task to carry out in a research.

Deciding when an algorithm is better than 
other one may not be a trivial task.other one  may not be a trivial task. 
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Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55 5 81 9 85 4 77 5 85 2 83 3 85 7 Example  for 
aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42 7 44 4 46 8 50 6 52 1 49 8 52 3 

p
classification

Large Variations in 
A i f Diff t cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 

gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52 2 89 4 94 9 87 0 98 3 98 4 98 6 Is really the alg 3 the

Accuracies of Different 
Classifiers

krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51 8 100 0 100 0 96 4 100 0 100 0 99 8 

Is really the alg.3 the 
best performing one 
because it obtains the 

mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 
pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93 8 96 1 96 3 93 3 98 4 97 0 96 7 

best average value?

sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61 4 92 4 92 6 90 1 96 3 96 5 95 4 vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 
vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 
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Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55 5 81 9 85 4 77 5 85 2 83 3 85 7 aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42 7 44 4 46 8 50 6 52 1 49 8 52 3 

Alg. 4 is the winner in 8 
problems with average 78 0 cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 

gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52 2 89 4 94 9 87 0 98 3 98 4 98 6 

problems with average 78.0

Alg. 2 is the winner  for 4 
problems with average 80.0

krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51 8 100 0 100 0 96 4 100 0 100 0 99 8 

What is the best between  
both?

mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 
pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93 8 96 1 96 3 93 3 98 4 97 0 96 7 sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61 4 92 4 92 6 90 1 96 3 96 5 95 4 vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 
vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 
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Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55 5 81 9 85 4 77 5 85 2 83 3 85 7 

We must use 
statistical tests for  

aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42 7 44 4 46 8 50 6 52 1 49 8 52 3 

comparing the 
algorithms.

cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 
gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52 2 89 4 94 9 87 0 98 3 98 4 98 6 

The problem: 
krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51 8 100 0 100 0 96 4 100 0 100 0 99 8 How must I do the

statistical
experimental study?

mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 
pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93 8 96 1 96 3 93 3 98 4 97 0 96 7 experimental study?

What tests must I 
?

sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61 4 92 4 92 6 90 1 96 3 96 5 95 4 use?

5

vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 
vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 
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Objectivej

To show some results on the use of statistical tests 

(nonparametric tests) for comparing algorithms.
We will not discuss the performance measures that can beWe will not discuss the performance measures that can be 

used neither the choice on the set of benchmarks. 

Some guidelines on the use of appropriate nonparametricSome guidelines on the use of appropriate nonparametric 
tests depending on the situation will be given
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OUTLINE
 Introduction to Inferential Statistics
 Conditions for the safe use of parametric tests

OU N

 Theoretical background
 Checking the conditions in Parameter Optimization Experiments

 Basic non-parametric tests and case studies:p
 For Pairwise Comparisons
 For Multiple Comparisons involving control method
 Evolutionary Algorithms: CEC’05 Special Session on Parameter Optimizationy g p p

 Lessons Learned
 Recommendations on the use of nonparametric tests
 Frequent QuestionsFrequent Questions

 Books of Interest and References
 Software
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 Books of Interest,References and Software
 Software
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Introduction to Inferential Statistics

Inferential Statistics

provide measures of how well your data (results ofprovide measures of how well your data (results of 
experiments) support your hypothesis and if your 
data are generalizable beyond what was testeddata are generalizable beyond what was tested 
(significance tests)

For example: Comparing two or various sets of 
experiments in a computational problem. 

Parametric versus Nonparametric Statistics Parametric versus Nonparametric Statistics –– When When 
h d hi h i f l?h d hi h i f l?to use them and which is more powerful?to use them and which is more powerful?

9



Introduction to Inferential Statistics

What is an hypothesis?

a prediction about a single population or about thea prediction about a single population or about the 
relationship between two or more populations.

Hypothesis testing is a procedure in which sample 
data are employed to evaluate a hypothesis.

The null hypothesis is a statement of no effect or no 
difference and it is expected to be rejected by the 
experimenter.

10



Introduction to Inferential Statistics

Examples of Null Hypothesis
Ho: The 2 samples come from populations with the same 
distributions

Examples of Null-Hypothesis

distributions.

Or, 

median of population 1 = median of population 2median of population 1 = median of population 2

(generalization with n samples)

Significance level α
• It is a confidence threshold that informs us whether or not to 

reject the null hypothesis.
• It must be pre-defined by the experimenter and a significance• It must be pre-defined by the experimenter and a significance 

level of 90% (0.1) or 95% (0.05) is usually used, also 99% 
(0.01). 11



Introduction to Inferential Statistics

Significance level α
 If you decide for a significance level of 0.05 (95% 

t i t  th t th  i d d i   i ifi t 

Significance level α

certainty that there indeed is a significant 
difference), then a p-value (datum provided by 
the test) smaller than 0.05 indicates that you can the test) smaller than 0.05 indicates that you can 
reject the null-hypothesis.

 Remember: the null-hypothesis generally is  Remember: the null-hypothesis generally is 
associated to an hypothesis of equality or 
equivalence (equal means or distributions).

 So, if a test obtains p = 0.07, it means that you 
cannot reject the null hypothesis of equality j yp q y
there is no significant differences in the 
analysis conducted 12



Introduction to Inferential Statistics

p value
 Instead of stipulating a priori level of significance

ld l l t th ll t l l f

p-value

α, one could calculate the smallest level of
significance that results in the rejection of the null
hypothesis.hypothesis.

 This is the p-value, it provides informationp , p
about “how significant” the result is.

 It does it without commiting to a particular
level of significancelevel of significance.

13



Introduction to Inferential Statistics

Th i t l t t i t t i l t t b i

Parametric Nonparametric

There is at least one nonparametric test equivalent to a basic 
parametric test

• Compare two variables

Parametric Nonparametric
t-test Sign test

Wilcoxon signed 

• If more than two variables

Wilcoxon signed 
rank test

ANOVA and Friedman test
• If more than two variables derivatives and more…

Tukey, 
Tamhane  

Bonferroni-Dunn,
H l  tTamhane, ... Holm, etc…

14



Introduction to Inferential Statistics

Parametric AssumptionsParametric Assumptions 
(t-test, ANOVA, …)

 The observations must be independent

 Normality: The observations must be drawn 
from normally distributed populations

 Homoscedasticity: These populations must have 
h   ithe same variances

15
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Normality Tip

If a histogram representing your data looks like this,

you can conduct a parametric test!

16



Introduction to Inferential Statistics

Otherwise, don’t conduct a parametric test! 

The conclusions could be erroneous
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Introduction to Inferential Statistics

Nonparametric AssumptionsNonparametric Assumptions 
(Wilcoxon, Friedman, …)

 The observations must be independent

 The data must be represented by ordinal 
numbering.

How do nonparametric tests work?
Most nonparametric tests use ranks instead of raw data for 
their hypothesis testing.
 Th l t f ti d i d t bt i They apply a transformation procedure in order to obtain 
ranking data. 18
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Conditions for the safe use of parametric tests

 Theoretical background

Co d o s o e s e use o p e c es s

 Theoretical background
 Checking the conditions in Parameter

Optimization ExperimentsOptimization Experiments

20



Conditions for the Safe Use of Parametric Tests
Theoretical Background

The distinction between parametric and nonparametric test

Theoretical Background

The distinction between parametric and nonparametric test
is based on the level of measure represented by the data
which will be analyzed.

A parametric test is able to use data composed by real
values: But when we dispose of this type of data, we should notp yp ,
always use a parametric test.

There are some assumptions for a safe usage of parametric tests ad
the non fulfillment of these conditions might cause a statisticalthe non fulfillment of these conditions might cause a statistical
analysis to lose credibility.

21



Conditions for the Safe Use of Parametric Tests
Theoretical Background

In order to use the parametric tests, is necessary to check

Theoretical Background

the following conditions:

Independence: In statistics, two events are independent whenp p
the fact that one occurs does not modify the probability of the
other one occurring.
 When we compare two optimization algorithms they are usually

independent.

 When we compare two machine learning methods, it depends on
the partition:

 The independency is not truly verified in 10 fcv (a portion of The independency is not truly verified in 10-fcv (a portion of
samples is used either for training and testing in different
partitions.

 Hold out partitions can be safely take as independent, since
training and test partitions do not overlap. 22



Conditions for the Safe Use of Parametric Tests
Theoretical BackgroundTheoretical Background

Parametric tests assume that the data are taken from normal
distributions

Normality: An observation is normal when its behaviour
follows a normal or Gauss distribution with a certain value of

d i A lit t t li d laverage  and variance  A normality test applied over a sample
can indicate the presence or absence of this condition in observed
datadata.

• Kolmogorov-Smirnov

• Shapiro-Wilk

• D’Agostino-Pearson
23



Conditions for the Safe Use of Parametric Tests
Theoretical Background

Kolmogorov-Smirnov: It compares the accumulated distribution
f b d d i h h l d G i di ib i

Theoretical Background

of observed data with the accumulated Gaussian distribution
expected.

Shapiro-Wilk: It analyzes the observed data to compute the level
of symmetry and kurtosis (shape of the curve) in order to
compute the difference with respect to a Gaussian distributioncompute the difference with respect to a Gaussian distribution
afterwards.

D’A ti P It t th k d k t i tD’Agostino-Pearson: It computes the skewness and kurtosis to
quantify how far from the Gaussian distribution is in terms of
asymmetry and shapeasymmetry and shape.

24



Conditions for the Safe Use of Parametric Tests
Theoretical BackgroundTheoretical Background

Heteroscedasticity: This property indicates the existence of a
violation of the hypothesis of equality of variances.

Levene’s test is used for checking if k samples present or not
this homogeneity of variances (homoscedasticity).g y ( y)

25
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Conditions for the safe use of parametric tests

 Theoretical background

Co d o s o e s e use o p e c es s

 Theoretical background
 Checking the conditions in Parameter

Optimization ExperimentsOptimization Experiments

26



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Parameter Optimization Experiments

Special Session on Real Parameter Optimization at CEC 05

Checking the Conditions in Parameter Optimization Experiments

25 f ti ith l t 10 i bl

Special Session on Real-Parameter Optimization at CEC-05,
Edinburgh, UK, 2-5 Sept. 2005 

25 functions with real parameters, 10 variables:  
f1-f5 unimodal functions     f6-f25 multimodal functions

Source: S. García, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-
Parametric Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case 
Study on the CEC'2005 Special Session on Real Parameter Optimization. Journal of 
Heuristics 15 (2009) 617-644, doi: 10.1007/s10732-008-9080-4. 27



Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Parameter Optimization ExperimentsChecking the Conditions in Parameter Optimization Experiments
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Checking the Conditions in Parameter Optimization ExperimentsChecking the Conditions in Parameter Optimization Experiments
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Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Parameter Optimization ExperimentsChecking the Conditions in Parameter Optimization Experiments
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Conditions for the Safe Use of Parametric Tests
Checking the Conditions in Parameter Optimization ExperimentsChecking the Conditions in Parameter Optimization Experiments
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 Lessons Learned
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 Recommendations on the use of nonparametric testsRecommendations on the use of nonparametric tests
 Frequent Questions

 Books of Interest, References and Software
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Basic Non-Parametric Tests and Case Studies

 For Pairwise Comparisons

s c No e c es s d C se S ud es

 For Pairwise Comparisons
 For Multiple Comparisons involving a Control 

MethodMethod
 Evolutionary Algorithms: CEC’05 Special Session

f P O i i iof Parameter Optimization

33



Basic Non-Parametric Tests and Case Studies
For Pairwise Comparisons

Count of Wins, Losses and Ties: The Sign Test

For Pairwise Comparisons

Count of Wins, Losses and Ties: The Sign Test

It a classic form of inferential statistics that use the binomialIt a classic form of inferential statistics that use the binomial 
distribution. If two algorithms compared are, assumed under the null-
hypothesis, equivalent, each should win approximately N/2 out of N 
datasets/problems.

The number of wins are distributed following a binomial distribution. g
The critical number of wins are presented in the following Table for 
α=0.05 and α=0.1:

34



Basic Non-Parametric Tests and Case Studies
For Pairwise Comparisons

Wilcoxon Signed-Ranks Test for Paired Samples

For Pairwise Comparisons

The Wilcoxon Signed-Ranks test is used in exactly the same situations

Wilcoxon Signed Ranks Test for Paired Samples

The Wilcoxon Signed-Ranks test is used in exactly the same situations 
as the paired t-test (i.e., where data from two samples are paired).

In general the Test asks:In general, the Test asks:

Ho: The 2 samples come from populations with the same 
di t ib ti O di f l ti 1 di fdistributions. Or, median of population 1 = median of 
population 2

The test statistic is based on ranks of the differences 
between pairs of data.
NOTE: If you have  5 pairs of data points, the Wilcoxon Signed-
Ranks test can never report a 2-tailed p-value < 0.05 35



Basic Non-Parametric Tests and Case Studies
For Pairwise Comparisons

Example of the Wilcoxon Signed-Ranks Test

For Pairwise Comparisons

Example of the Wilcoxon Signed Ranks Test
dataset C4.5 C4.5m Difference Rank

Adult 0.763 0.768 +0.005 3.5

Breast 0.599 0.591 -0.008 7

Wisconsin 0.954 0.971 +0.017 9

Cmc 0.628 0.661 +0.033 12
R+ = 3.5 + 9 + 12 + 5 + 6+ 14+ 
11 + 13 + 8 + 10 + 1.5 = 93

Ionosphere 0.882 0.888 +0.006 5

Iris 0.936 0.931 -0.005 3.5

Bupa 0.661 0.668 +0.007 6

Lung 0.583 0.583 0.000 1.5

Lymphograph 0.775 0.838 +0.063 14 R- = 7 + 3.5 + 1.5 = 12y p g p

Mushroom 1.000 1.000 0.000 1.5

Tumor 0.940 0.962 +0.022 11

Rh 0 619 0 666 +0 047 13Rheum 0.619 0.666 +0.047 13

Voting 0.972 0.981 +0.009 8

Wine 0.957 0.978 +0.021 10
36



Basic Non-Parametric Tests and Case Studies
For Pairwise Comparisons

Example of the Wilcoxon Signed-Ranks Test

For Pairwise Comparisons

Example of the Wilcoxon Signed Ranks Test

R+ = 3 5 + 9 + 12 + 5 +R+ = 3.5 + 9 + 12 + 5 +

6+ 14+ 11 + 13 + 

8 + 10 + 1.5 = 93

R 7 + 3 5 + 1 5 12R- = 7 + 3.5 + 1.5 = 12 

T =  Min {R+ , R- } = 12

= 0.05, N = 14    dif  = 21 37



Basic Non-Parametric Tests and Case Studies
For Pairwise Comparisons

Example of the Wilcoxon Signed-Ranks Test

For Pairwise Comparisons

Example of the Wilcoxon Signed Ranks Test

Critical value for T for 
N up to 25. 

It T <= dif (table value)It T <=  dif (table-value) 
then Reject the Ho

38



Basic Non-Parametric Tests and Case Studies
For Pairwise ComparisonsFor Pairwise Comparisons

For n  30: use T values (and refer to a Table B.12. Critical Values 
of the Wilcoxon T Distribution, Zar,  App 101)

For n > 30: use z-scores (z is distributed approximately normally).    
(and refer to the z-Table, Table B.2. Zar – Proportions of the 
Normal Curve (One-tailed), App 17)

WhWhere,

with  = 0.05, the null-hypothesis can be rejected if z is smaller 
than –1.96.

39



Basic Non-Parametric Tests and Case Studies
For Pairwise ComparisonsFor Pairwise Comparisons

The Wilcoxon signed ranks test is more sensible than the t-
test. It assumes commensurability of differences, but only
qualitatively: greater differences still count more which isqualitatively: greater differences still count more, which is
probably desired, but the absolute magnitudes are ignored.

From the statistical point of ie the test is safer since it doesFrom the statistical point of view, the test is safer since it does
not assume normal distributions. Also, the outliers
(exceptionally good/bad performances on a few data-(exceptionally good/bad performances on a few data
sets/problems) have less effect on the Wilcoxon than on the t-
test.

The Wilcoxon test assumes continuous differences, therefore
they should not be rounded to one or two decimals, since thisy ,
would decrease the power of the test due to a high number of
ties. 40
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Basic Non-Parametric Tests and Case Studies

 For Pairwise Comparisons

s c No e c es s d C se S ud es

 For Pairwise Comparisons
 For Multiple Comparisons involving a Control 

MethodMethod
 Evolutionary Algorithms: CEC’05 Special Session
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Using Wilcoxon test for comparing multiple

For Multiple Comparisons involving a Control Method

Using Wilcoxon test for comparing multiple
pairs of algorithms:

Wilcoxon’s test performs individual comparisons between two
algorithms (pairwise comparisons). The p-value in a pairwiseg (p p ) p p
comparison is independent from another one. If we try to
extract a conclusion involving more than one pairwise
comparison in a Wilcoxon’s analysis we will obtain ancomparison in a Wilcoxon s analysis, we will obtain an
accumulated error coming from the combination of pairwise
comparisons. In statistical terms, we are losing the control on
the Family Wise Error Rate (FWER) defined as the probabilitythe Family Wise Error Rate (FWER), defined as the probability
of making one or more false discoveries among all the
hypotheses when performing multiple pairwise tests.
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When a p-value is considered in a multiple comparison, it reflects the

For Multiple Comparisons involving a Control Method

When a p value is considered in a multiple comparison, it reflects the
probability error of a certain comparison, but it does not take into account the
remaining comparisons belonging to the family.

If one is comparing k algorithms and in each comparison the
level of significance is α, then in a single comparison the
probability of not making a Type I error is (1 – α), then
the probability of not making a Type I error in the k-1
comparison is (1- α)·(k-1). Then the probability of making one orcomparison is (1 α) (k 1). Then the probability of making one or
more Type I error is 1 - (1- α)·(k-1).

For instance if α = 0 05 and k = 10 this is 0 37 which isFor instance, if α = 0.05 and k = 10, this is 0.37, which is
rather high.
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Friedman’s test: It is a non parametric equivalent of the test of repeated

For Multiple Comparisons involving a Control Method

Friedman’s test: It is a non-parametric equivalent of the test of repeated-
measures ANOVA. It computes the ranking of the observed results for algorithm
(rj for the algorithm j with k algorithms) for each function/algorithm, assigning to
h b f h h ki 1 d h h ki kthe best of them the ranking 1, and to the worst the ranking k.

Under the null hypothesis, formed from supposing that the results of the
algorithms are equivalent and, therefore, their rankings are also similar, the
Friedman statistic
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is distributed according to con k - 1 degrees of freedom, being ,
and N the number of functions/algorithms (N > 10 k > 5)
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and N the number of functions/algorithms. (N > 10, k > 5)
(Table B.1. Critical Values of the Chi-Square Distribution, App. 12, Zar).

N
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Iman and Davenport’s test: It is a metric derived from the Friedman’s
statistic given that this last metric produces a conservative undesirably
effect. The statistic is:

2)1( F
F

NF 
 2)1( F

F kN
F



and it is distributed according to a F distribution with k – 1 and (k - 1)(N - 1)
degrees of freedom.g

(Table B.4. Critical values of the F Distribution, App. 21, Zar).
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Example of the dataset C4.5 C4.5m C4.5cf C4.5cf,m

Adult 0 763 0 768 0 771 0 798

For Multiple Comparisons involving a Control Method

Friedman Test
Adult 0.763 0.768 0.771 0.798

Breast 0.599 0.591 0.590 0.569

Wisconsin 0.954 0.971 0.968 0.967

The results obtained 

Cmc 0.628 0.661 0.654 0.657

Ionosphere 0.882 0.888 0.886 0.898

Iris 0 936 0 931 0 916 0 931(performances) are arranged by 
a matrix of data with data sets 
in the rows and algorithms in 

Iris 0.936 0.931 0.916 0.931

Bupa 0.661 0.668 0.609 0.685

Lung 0.583 0.583 0.563 0.625

the columns. Lymphography 0.775 0.838 0.866 0.875

Mushroom 1.000 1.000 1.000 1.000

Tumor 0.940 0.962 0.965 0.962
C4.5 with cf parameter is the 
version which optimizes AUC 
considering various levels of

Rheum 0.619 0.666 0.614 0.669

Voting 0.972 0.981 0.975 0.975
considering various levels of 

confidence for pruning a leaf.
Wine 0.957 0.978 0.946 0.970
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Example of the dataset C4.5 C4.5m C4.5cf C4.5cf,m

Adult 4 3 2 1

For Multiple Comparisons involving a Control Method

Friedman Test
Rankings are assigned in 

Adult 4 3 2 1

Breast 1 2 3 4

Wisconsin 4 1 2 3Rankings are assigned in 
increasing order from the best 
to the worst algorithm for each 

dataset/problem

Cmc 4 1 3 2

Ionosphere 4 2 3 1

Iris 1 2 5 4 2 5dataset/problem.

Ties in performance are

Iris 1 2.5 4 2.5

Bupa 3 2 4 1

Lung 2.5 2.5 4 1
Ties in performance are 
computed by averaged 

rankings.

Lymphography 4 3 2 1

Mushroom 2.5 2.5 2.5 2.5

Tumor 4 2.5 1 2.5

The most interesting datum for 

Rheum 3 2 4 1

Voting 4 1 2 3

now is the Average Rank for 
each algorithm.

Wine 3 1 4 2

Average Rank 3.143 2.000 2.893 1.96447
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C4.5 C4.5m C4.5cf C4.5cf,m

A R k 3 143 2 000 2 893 1 964

For Multiple Comparisons involving a Control Method

Friedman’s measure

Average Rank 3.143 2.000 2.893 1.964

Friedman s measure
)1(12 2
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Observing the critical value, it can be concluded that it rejects the null hypothesis
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C4.5 C4.5m C4.5cf C4.5cf,m

A R k 3 143 2 000 2 893 1 964

For Multiple Comparisons involving a Control Method

Iman and Davenport’s measure

Average Rank 3.143 2.000 2.893 1.964

Iman and Davenport s measure

69328.9·13)1( 2
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FF = 3.69, F(3,3x13) = 2.85

Observing the critical value, it can be concluded that it rejects the null hypothesis
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If the null hypothesis is rejected by Friedman or Iman-Davenport test,
we can proceed with a post-hoc test:

The most frequent case is when we want to compare one algorithm (the
proposal) with a set of algorithm. This type of comparison involves ap p ) g yp p
CONTROL method, and it is usually denoted as a 1 x n comparison.

The simplest procedure in 1 x n comparisons is the Bonferroni-Dunn
test. It adjusts the global level of significance by dividing it by (k – 1) in
all cases being k the number of algorithmsall cases, being k the number of algorithms.
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However, a more general way to obtain the differences among
algorithms is to obtain a statistic that follow a normal distribution. The
test statistics for comparing the i-th algorithm with the j-th algorithm is
computed by:

The z value is used to find the corresponding probability from the table of
normal distribution, which is then compared with an appropriate α.

In Bonferroni-Dunn, α is always divided by (k - 1) independently of the
comparison, following a very conservative behavior. For this reason otherp , g y
procedures such as Holm’s or Hochberg’s are preferred.
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Holm’s method: We dispose of a test that sequentially checks the hypothesis

For Multiple Comparisons involving a Control Method

Holm s method: We dispose of a test that sequentially checks the hypothesis
ordered according to their significance. We will denote the p values ordered: p1  p2
…  pk-1 .

Holm’s method compares each pi with /(k-i) starting from the most significant p
value. If p1 Is below than /(k-1), the corresponding hypothesis is rejected and it
l i h /(k 2) If h d h h i i j dleaves us to compare p2 with /(k-2). If the second hypothesis is rejected, we
continue with the process. As soon as a certain hypothesis can not be rejected, all
the remaining hypothesis are maintained as accepted.

The value of z is used for finding the corresponding probability from the table of theg p g p y
nomal distribution, which is compared with the corresponding value of  .
(Table B.2. Zar – Proportions of the Normal Curve (One-tailed), App 17)
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Hochberg’s method: It is a step up procedure that works in the opposite direction

For Multiple Comparisons involving a Control Method

Hochberg’s method: It is a step-up procedure that works in the opposite direction
to Holm’s method, comparing the largest p value with , the next largest with /2
and so forth until it encounters a hypothesis it can reject. All hypotheses with

ll l h j d llsmaller p values are then rejected as well.

Hochberg’s method is more powerful than Holm’s although it may under some
circumstances exceed the family-wise error.
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Design of  Experiments
Recommendations on the Use of Non-Parametric Tests

They are not the objective of our talk, but they are two
additional important questions:p q

 Benchmark functions/data sets … are very important.

 To compare with the state of the art is a necessity. To compare with the state of the art is a necessity.
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Recommendations on the Use of Non Parametric Tests

What happens if I use a nonparametric test when the data

Recommendations on the Use of Non-Parametric Tests

What happens if I use a nonparametric test when the data
is normal?

 It will work, but a parametric test would be more 
powerful, i.e., give a lower p value.

 If the data is not normal, then the nonparametric 
test is usually more powerfultest is usually more powerful

 Always look at the data first  then decide  Always look at the data first, then decide 
what test to use.  
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General

Recommendations on the Use of Non-Parametric Tests

If we have a set of data sets/benchmark functions, we must apply a
t i t t f h d t t/b h k f tiparametric test for each data set/benchmark function.

We only need to use a non-parametric test for comparing the
algorithms on the whole set of benchmarks.
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Multiple comparison with a control (1)

Recommendations on the Use of Non-Parametric Tests

 Holm’s procedure can always be considered better than
Bonferroni-Dunn’s one, because it appropriately controls the
FWER and it is more powerful than the Bonferroni-Dunn’s. We
t l d th f H l ’ th d i istrongly recommend the use of Holm’s method in a rigorous

comparison.

 Hochberg’s procedure is more powerful than Holm’s. The
differences reported between it and Holm’s procedure are in
practice rather small. We recommend the use of this test together

ith Holm’s methodwith Holm’s method
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Multiple comparison with a control (2)

Recommendations on the Use of Non-Parametric Tests

 The choice of any of the statistical procedures for conducting an
i l l i h ld b j ifi d b h h hexperimental analysis should be justified by the researcher. The use

of the most powerful procedures does not imply that the results
obtained by his/her proposal will be betterobtained by his/her proposal will be better
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Lessons Learned
Frequent QuestionsFrequent Questions

 Can we analyze any performance measure?

With non-parametric statistic, any unitary performance measure
(associated to an only algorithm) with a pre-defined range of output
can be anal ed This range co ld be nlimited allo ing s tocan be analyzed. This range could be unlimited, allowing us to
analyze time resources as example.
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Lessons Learned
Frequent QuestionsFrequent Questions

 Can we compare deterministic algorithms with stochastic ones?

 They allow us to compare both types of algorithms because they
can be applied in multi-domain comparisons, where the sample of
res lts is composed b a res lt that relates an algorithm and aresults is composed by a result that relates an algorithm and a
domain of aplication (problem, function, data-set, …)
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Lessons Learned
Frequent QuestionsFrequent Questions

 How the average results should be obtained from each
algorithm?

 This question does not concern to the use of non-parametric
statistics, due to the fact that these tests require a result for each
pair algorithm domain The obtaining of s ch res lt m st bepair algorithm-domain. The obtaining of such result must be
according to a standard procedure followed by all the algorithms in
the comparison, such the case of validation techniques. Averagethe comparison, such the case of validation techniques. Average
results from various runs (at least 3) must be used for stochastic
algorithms.
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Frequent QuestionsFrequent Questions

What is the relationship between the number of algorithms and
datasets/problems to do a correct statistical analysis?

 In multiple comparisons, the number of problems (data-sets)
must be greater than the double of algorithms. With lesser data-sets,
it is highl probable to not reject an n ll h photesisit is highly probable to not reject any null hyphotesis.
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Lessons Learned
Frequent QuestionsFrequent Questions

 Is there a maximum number of datasets/problems to be used?

 There not exists a theoretical threshold, although if the number
of problems is very high in relation with the number of algorithms,
the res lts trend to be inacc rate b the central limit theorem Forthe results trend to be inaccurate by the central limit theorem. For
pairwise comparisons, such Wilcoxon’s, a maximum of 30
problems is suggested. In multiple comparisons with a control, weproblems is suggested. In multiple comparisons with a control, we
should indicate as a rule of thumb that n > 8·k could be excessive
and results in no significant comparisons.
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Frequent QuestionsFrequent Questions

 The Wilcoxon test applied several times works better than a
multiple comparison test such as Holm, Is it correct to be used in
these cases?these cases?

 The Wilcoxon test can be applied according a multiple
comparison scheme, but the results obtained cannot be considered
into a famil hich control the FWER Each time a neinto a family which control the FWER. Each time a new
comparison is conducted, the level of significance established a
priori can be overcome. For this reason, the multiple comparisonpriori can be overcome. For this reason, the multiple comparison
tests exist.
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Frequent QuestionsFrequent Questions

 Can we use only the rankings obtained to justify the results?

With the rankings values obtained by Friedman and derivatives
we can establish a clear order in the algorithms and even to
meas re the differences among them Ho e er it cannot bemeasure the differences among them. However, it cannot be
concluded that one proposal is better than other until the hypothesis
of comparison associated to them is rejected.of comparison associated to them is rejected.
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Frequent QuestionsFrequent Questions

 Is it necessary to check the rejection of the null hypothesis of
Friedman and derivatives before conducting a post-hoc analysis?

 It should be done, although by definition, it can be computed
independently.
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Ho m st I cond ct statistical comparisons in m E perimentalHow must I conduct statistical comparisons in my Experimental 
Study? On the use of Nonparametric Tests and Case Studies.
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