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Motivation

The experimental analysis on the
performance of a new method is a crucial
and necessary task to carry out in a research.

Deciding when an algorithm is better than
other one may not be a trivial task.
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Motivation Example for

in Data Mining and

classification

Large Variations in
Accuracies of Different
Classifiers

Is really the alg.3 the
best performing one
because it obtains the
best average value?

THAT'S SUSPICIOUS...

a\[e AlQ AlQ 2\ [o 4 AlQ Alg. © AlQ
aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7
aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0
cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3
gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7
Krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4
imus 51.8 100.0 100.0 6.4 100.0 100.0 99.8
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0
pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1
sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7
soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2
vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4
VOow 9.1 99.1 96.6 65.3 80.7 78.3 87.6
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3
Z0O0 41.7 94.6 92.5 95.4 91.6 92.5 92.6
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Motivation

Alg. 4 is the winner in 8
problems with average 78.0

Alg. 2 is the winner for 4
problems with average 80.0

What is the best between
both?

in Data Mining and
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Motivation

We must use
statistical tests for
comparing the
algorithms.

in Data Mining and

The problem:

How must | do the
statistical
experimental study?

What tests must |
use?
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Objective

To show some results on the use of statistical tests

(nonparametric tests) for comparing algorithms.

We will not discuss the performance measures that can be
used neither the choice on the set of benchmarks.

Some guidelines on the use of appropriate nonparametric
tests depending on the situation will be given

CHALLENGE ACCEPTED
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OUTLINE

Introduction to Inferential Statistics
Conditions for the safe use of parametric tests

Theoretical background

Checking the conditions in Parameter Optimization Experiments
Basic non-parametric tests and case studies:

For Pairwise Comparisons

For Multiple Comparisons involving control method

Evolutionary Algorithms: CEC’05 Special Session on Parameter Optimization
Lessons Learned

Recommendations on the use of nonparametric tests

Frequent Questions
Books of Interest and References
Software
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Introduction to Inferential Statistics

Inferential Statistics

provide measures of how well your data (results of
experiments) support your hypothesis and if your
data are generalizable beyond what was tested
(significance tests)

For example: Comparing two or various sets of
experiments in a computational problem.

Parametric versus Nonparametric Statistics — When
to use them and which is more powerful?




Introduction to Inferential Statistics

What is an hypothesis?

a prediction about a single population or about the
relationship between two or more populations.

Hypothesis testing is a procedure in which sample
data are employed to evaluate a hypothesis.

The null hypothesis is a statement of no effect or no
difference and it is expected to be rejected by the

experimenter.
10



Introduction to Inferential Statistics

Examples of Null-Hypothesis

H,: The 2 samples come from populations with the same
distributions.

Or,
median of population 1 = median of population 2

(generalization with n samples)

Significance level a

 Jtis a confidence threshold that informs us whether or not to
reject the null hypothesis.

* It must be pre-defined by the experimenter and a significance
level of 90% (0.1) or 95% (0.05) is usually used, also 99% .
(0.01).



Introduction to Inferential Statistics

Significance level o

If you decide for a significance level of 0.05 (95%
certainty that there indeed is a significant
difference), then a p-value (datum provided by
the test) smaller than 0.05 indicates that you can
reject the null-hypothesis.

Remember: the null-hypothesis generally is
associated to an hypothesis of equality or
equivalence (equal means or distributions).

So, if a test obtains p = 0.07, it means that you
cannot reject the null hypothesis of equality =
there is no significant differences in the
analysis conducted 12



Introduction to Inferential Statistics

p-value

Instead of stipulating a priori level of significance
a, one could calculate the smallest level of
significance that results in the rejection of the null
hypothesis.

This is the p-value, it provides information
about “how significant” the result is.

It does It without commiting to a particular
level of significance.

13



Introduction to Inferential Statistics

There 1s at least one nonparametric test equivalent to a basic
parametric test

Parametric Nonparametric

« Compare two variables t-test Sign test

Wilcoxon signed
rank test

i ANOVA and | Friedman test
e Jf more than two variables derivatives

and more...
Tukey, Bonferroni-Dunn,
Tamhane, ... | Holm, etc...

14



Introduction to Inferential Statistics

Parametric Assumptions
(t-test, ANOVA, ...)

m The observations must be independent

m Normality: The observations must be drawn
from normally distributed populations

m Homoscedasticity: These populations must have
the same variances

15
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Normality Tip

If a histogram representing your data looks like this,

you can conduct a parametric test!

16
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Otherwise, don’t conduct a parametric test!

The conclusions could be erroneous
90 -

80 1
701
60
501
40 1]
301]
201]]
10

O

Histogram 17



Introduction to Inferential Statistics

Nonparametric Assumptions

(Wilcoxon, Friedman, ...)

m The observations must be independent

m The data must be represented by ordinal
numbering.

How do nonparametric tests work?

Most nonparametric tests use ranks instead of raw data for
their hypothesis testing.

They apply a transformation procedure in order to obtain
ranking data. 18
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Conditions for the safe use of parametric tests
Theoretical background
Checking the conditions in Parameter Optimization Experiments

19
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Conditions for the safe use of parametric tests

Theoretical background

20



Conditions for the Safe Use of Parametric Tests

- Theoretical Background

The distinction between parametric and nonparametric test
is based on the level of measure represented by the data
which will be analyzed.

A parametric test is able to use data composed by real
values: But when we dispose of this type of data, we should not
always use a parametric test.

There are some assumptions for a safe usage of parametric tests ad
the non fulfillment of these conditions might cause a statistical
analysis to lose credibility.

21



Conditions for the Safe Use of Parametric Tests

- Theoretical Background

In order to use the parametric tests, is necessary to check
the following conditions:

Independence: In statistics, two events are independent when
the fact that one occurs does not modify the probability of the
other one occurring.

e When we compare two optimization algorithms they are usually
independent.

e When we compare two machine learning methods, it depends on
the partition:

e The independency is not truly verified in 10-fcv (a portion of
samples is used either for training and testing in different
partitions.

e Hold out partitions can be safely take as independent, since
training and test partitions do not overlap. 22



Conditions for the Safe Use of Parametric Tests

- Theoretical Background

Parametric tests assume that the data are taken from normal
distributions

Normality: An observation i1s normal when its behaviour
follows a normal or Gauss distribution with a certain value of
average p and variance o. A normality test applied over a sample

can indicate the presence or absence of this condition 1n observed
data.

 Kolmogorov-Smirnov
*  Shapiro-Wilk

« D’Agostino-Pearson
23



Conditions for the Safe Use of Parametric Tests

- Theoretical Background

Kolmogorov-Smirnov: It compares the accumulated distribution
of observed data with the accumulated Gaussian distribution
expected.

Shapiro-Wilk: It analyzes the observed data to compute the level
of symmetry and kurtosis (shape of the curve) in order to
compute the difference with respect to a Gaussian distribution
afterwards.

D’Agostino-Pearson: It computes the skewness and kurtosis to
quantify how far from the Gaussian distribution 1s in terms of
asymmetry and shape.

24



Conditions for the Safe Use of Parametric Tests

- Theoretical Background

Heteroscedasticity: This property indicates the existence of a
violation of the hypothesis of equality of variances.

Levene’s test 1s used for checking if k samples present or not
this homogeneity of variances (homoscedasticity).

25
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Conditions for the safe use of parametric tests

Checking the conditions in Parameter
Optimization Experiments

26
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]y U C OI'10 U

= AT a e . = v N -
dl c J U d UU 0

Special Session on Real-Parameter Optimization at CEC-05,
Edinburgh, UK, 2-5 Sept. 2005

25 functions with real parameters, 10 variables:
f1-fS unimodal functions {6-f25 multimodal functions

P. N. Suganthan, N. Hansen, J. I. Liang, K. Deb, Y. P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real parameter optimization.” Nanyang Techno-
logical University, Tech. Rep., 2005, available as http://www.ntu.edu.sg/
home/epnsugan/index _files/CEC-05/Tech-Report-May-30-035. pdf.

N. Hansen, “Compilation of Results on the CEC Benchmark Function
Set,” Institute of Computational Science, ETH Zurich, Switerland,

Tech. Rep.. 2005, available as http://www.ntu.edu.sg/home/epnsugan/
index_files/CEC-05/compareresults.pdf.

Source: S. Garcia, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-
Parametric Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case
Study on the CEC'2005 Special Session on Real Parameter Optimization. Journal of
Heuristics 15 (2009) 617-644, doi: 10.1007/s10732-008-9080-4.

oY
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[0 Algorithms involved in the comparison:

BLX-GL50 (Garcia-Martinez & Lozano, 2005 ): Hybrid Real-Coded Genetic
Algorithms with Female and Male Differentiation

BLX-MA (Molina et al., 2005): Adaptive Local Search Parameters for Real-Coded
Memetic Algorithms

CoEVO (Posik, 2005): Mutation Step Co-evolution

DE (Ronkkonen et al.,2005):Differential Evolution

DMS-L-PSO: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search
EDA (Yuan & Gallagher, 2005): Estimation of Distribution Algorithm

G-CMA-ES (Auger & Hansen, 2005): A restart Covariance Matrix Adaptation
Evolution Strategy with increasing population size

K-PCX (Sinha et al., 2005): A Population-based, Steady-State real-parameter
optimization algorithm with parent-centric recombination operator, a polynomial
mutation operator and a niched -selection operation.

L-CMA-ES (Auger & Hansen, 2005): A restart local search Covariance Matrix
Adaptation Evolution Strategy

L-SaDE (Qin & Suganthan, 2005): Self-adaptive Differential Evolution algorithm
with Local Search

SPC-PNX (Ballester et al.,2005): A steady-state real-parameter GA with PNX
crossover operator

28
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' W
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Table 3 Test of normality of D’ Agostino-Pearson

fl f2 f3 f4 f5 f6 f7 f8 f9

BLX-GL50 (.10) (L06) * (.00) (.24)  *(.00) ¥ (.00) (.28) (.21)  * (.00)
BLX-MA 00y F(L00) ((22)  * 00y F OO0y F(LO0) (.19) (.12)  * (.00)

f10 f11 f12 f13 f14 f15 f16 f17 f18

BLX-GL50 (.17) (.19)  * (.00) (.79) (.47)  F 00y  *(00) (.07) *(.03)
BLX-MA (.80)  *(.00) *(.03) (.38) (.16)  * (.00) (.21) (.54) *(.04)

f19 20 f21 f22 f23 f24 f25

BLX-GL50 (.05) (.05) (L06)  F 01y FL00)  F 00 (.11)
BLX-MA ¥00)  F (.00 (.25) ¥ (.00)  *(.00) *(.00) (.20)

29



Conditions for the Safe Use of Parametric Tests
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Figure 1: Example of non-normal distribution: Function 20 and BLX-GL50
algorithm: Histogram and Q-0) Graphic.
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Figure 2: Example of normal distribution: Function f10 and BLX-MA algo-
rithm: Histogram and Q-C) Graphic.
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Table 4 Test of heteroscedasticity of Levene (based on means)

f1 2 £3 f4 f5 f6 7 8 9

LEVENE (.07) .07y  *(00) F04) FO0) *F00)  *F (00 (.41)  * (.00

f10 f11 12 f13 f14 f15 f16 f17 f18

LEVENE (.99) * (.00) (.08) (.18) (.87  *F (00 F (00 (.24) (.21)

f19 20 21 22 23 24 25

LEVENE * (.01) *00) * (.00 (.47) (.28)  *(.00) * (.00

31
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Basic non-parametric tests and case studies:
For Pairwise Comparisons
For Multiple Comparisons involving control method
Evolutionary Algorithms: CEC’05 Special Session on Parameter Optimization

32
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Basic Non-Parametric Tests and Case Studies

For Pairwise Comparisons

33



Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons
Count of Wins, Losses and Ties: The Sign Test

It a classic form of inferential statistics that use the binomial
distribution. If two algorithms compared are, assumed under the null-
hypothesis, equivalent, each should win approximately N/2 out of N
datasets/problems.

The number of wins are distributed following a binomial distribution.
The critical number of wins are presented in the following Table for

0=0.05 and a=0.1:

#datasets 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
wops o 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18
Wpip o 6 6 7 7 8 9 9 1010 11 12 12 13 13 14 14 15 16 16 17

34
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— ForPairwise Comparisons

Wilcoxon Signed-Ranks Test for Paired Samples

The Wilcoxon Signed-Ranks test 1s used in exactly the same situations
as the paired t-test (1.e., where data from two samples are paired).

In general, the Test asks:

H,: The 2 samples come from populations with the same
distributions. Or, median of population 1 = median of
population 2

The test statistic 1s based on ranks of the differences
between pairs of data.

NOTE: If you have < 5 pairs of data points, the Wilcoxon Signed-
Ranks test can never report a 2-tailed p-value < 0.05 35



Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Example of the Wilcoxon Signed-Ranks Test

dataset C4.5 C4.5m Difference Rank

Adult 0.763  0.768 +0.005 35

Breast 0.599 0.591 -0.008

Wisconsin 0.954 0.971 +0.017 9 R"=35+9+12+5+ 6+ 14+
Cme 0.628  0.661 +0.033 12 11+13+8+10+1.5=93
Ionosphere 0.882  0.888 +0.006 S

Iris 0.936 0.931 -0.005 @

Bupa 0.661 0.668 +0.007 6

Lung 0.583  0.583 0.000 1.5

Lymphograph 0.775  0.838 +0.063 14 R=7+35+15=12
Mushroom 1.000 1.000 0.000 @

Tumor 0.940 0.962 +0.022 11

Rheum 0.619  0.666 +0.047 13

Voting 0.972  0.981 +0.009 8

36
Wine 0.957 0.978 +0.021 10



Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons
Example of the Wilcoxon Signed-Ranks Test

LEVEL OF SIGNIFICANCE FOR ONE-TAILED TEST

R"™=35+9+12+5+
6+ 14+ 11+ 13 +
8+10+1.5=93

R =7+35+15=12

T= Min {R*,R"} =12

o=0.05,N=14 dif =21

n

0.025

0.01

0.005

LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST

0.05 0.02 0.01

1] 0 — —
7 2 0 —
a8 4 2 ]
=] 5] 3 2
10 8 5 3
11 11 ) 5
12 14 10 7
13 1 13 10
15 25 20 16
16 30 24 20
17 35 28 23
18 40 33 28
19 46 38 32
20 52 43 38
21 59 49 43
22 (5] 56 49
23 73 62 55
24 81 69 51
25 89 s 68 37




Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons
Example of the Wilcoxon Signed-Ranks Test

LEVEL OF SIGNIFICANCE FOR ONE-TAILED TEST
n 0.025 0.01 0.005
LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST
L] 0.05 0.02 0.01
Critical value for T for - . - -
N up to 25. ’ ; ° -
g8 4 2 ]
=] 5] 3 2
10 g = 2
11 11 7 5
o 12 14 10 7
[t T <= dif (table-value) 1 10
o 14 21 16 1=2
then Reject the H, s s 20 16
16 20 24 20
17 325 28 22
18 40 33 28
19 46 38 32
20 52 43 2B
21 59 49 4z
22 {=]=] 56 49
23 73 o2 55
24 81 59 Gl
25 89 r =1+ 38




Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

For n < 30: use T values (and refer to a Table B.12. Critical Values
of the Wilcoxon T Distribution, Zar, App 101)

For n > 30: use z-scores (z 1s distributed approximately normally).

(and refer to the z-Table, Table B.2. Zar — Proportions of the
Normal Curve (One-tailed), App 17)

_nn+1)
i 4
L — e
/n{n + 1)(2n + 1)
Where, \ 24

with a = 0.05, the null-hypothesis can be rejected if z is smaller

than —1.96.
39



Basic Non-Parametric Tests and Case Studies

~— ForPairwise Comparisons

The Wilcoxon signed ranks test is more sensible than the t-
test. It assumes commensurability of differences, but only
qualitatively: greater differences still count more, which is
probably desired, but the absolute magnitudes are ignored.

From the statistical point of view, the test is safer since it does

not assume normal distributions. Also, the outliers
(exceptionally good/bad performances on a few data-

e e il N i

sets/problems) have less effect on the Wilcoxon than on the t-
test.

The Wilcoxon test assumes continuous differences, therefore
they should not be rounded to one or two decimals, since this
would decrease the power of the test due to a high number 2(1;
ties.
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Basic Non-Parametric Tests and Case Studies

For Multiple Comparisons involving a Control
Method

41



Basic Non-Parametric Tests and Case Studies

Using Wilcoxon test for comparing multiple
pairs of algorithms:

Wilcoxon'’s test performs individual comparisons between two
algorithms (pairwise comparisons). The p-value in a pairwise
comparison is independent from another one. If we try to
extract a conclusion involving more than one pairwise
comparison in a Wilcoxon’s analysis, we will obtain an
accumulated error coming from the combination of pairwise
comparisons. In statistical terms, we are losing the control on
the Family Wise Error Rate (FWER), defined as the probability
of making one or more false discoveries among all the
hypotheses when performing multiple pairwise tests.

42



Basic Non-Parametric Tests and Case Studies

When a p-value 1s considered in a multiple comparison, it reflects the
probability error of a certain comparison, but it does not take into account the
remaining comparisons belonging to the family.

If one is comparing k algorithms and in each comparison the
level of significance is a, then in a single comparison the
probability of not making a Type | error is (1 — a), then

the probability of not making a Type | error in the k-1
comparison is (1- a)-(k-1). Then the probability of making one or
more Type | erroris 1 - (1- a):(k-1).

For instance, if a = 0.05 and k = 10, this is 0.37, which is
rather high.
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Friedman’s test: It is a non-parametric equivalent of the test of repeated-
measures ANOVA. It computes the ranking of the observed results for algorithm
(r; for the algorithm j with k algorithms) for each function/algorithm, assigning to
the best of them the ranking 1, and to the worst the ranking k.

Under the null hypothesis, formed from supposing that the results of the
algorithms are equivalent and, therefore, their rankings are also similar, the
Friedman statistic

12N | K(k+1)>
7 > R; - <D
)

T k(k+1) 4

is distributed according to con K - 1 degrees of freedom, being , R, = LZ r)
and N the number of functions/algorithms. (N > 10, k > 5) N~

(Table B.1. Critical Values of the Chi-Square Distribution, App. 12, Zar). 14



Basic Non-Parametric Tests and Case Studies

Iman and Davenport’s test: It is a metric derived from the Friedman’s
statistic given that this last metric produces a conservative undesirably
effect. The statistic is:

- __(N-Dy
F 2
N(k—1)— 72

and it is distributed according to a F distribution with kK — 1 and (k - 1)(N - 1)
degrees of freedom.

(Table B.4. Critical values of the F Distribution, App. 21, Zar).
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\ = \

Example Of the dataset C4.5 C4.5m C4.5¢f C4.5¢f,m
. Adult 0.763 0.768 0.771 0.798
Friedman Test Breast 0599  0.591 0590  0.569
Wisconsin 0.954 0.971 0.968 0.967
Cmc 0.628 0.661 0.654 0.657
. Ionosphere 0.882 0.888 0.886 0.898
The results obtained ,

(performances) are arranged by Ir1s 0.936 0.931 0.916 0.931
a matrix of data with data sets  °UP? 0.661 0.668  0.609 0.685
in the rows and algorithms in Lung 0.583  0.583 0.563 0.625

the columns. Lymphography  0.775 0.838 0.866 0.875
Mushroom 1.000 1.000 1.000 1.000

Tumor 0.940 0.962 0.965 0.962

C4.5 with cf parameter is the ~ Rheum 0.619  0.666 0614  0.669
version which optimizes AUC ;0 0972 0981 0975 0975
considering various levels of Wine 0.957 0.978 0.946 0.970

confidence for pruning a leaf. i




Basic Non-Parametric Tests and Case Studies

Example of the
Friedman Test

Rankings are assigned in
increasing order from the best
to the worst algorithm for each

dataset/problem.

Ties in performance are
computed by averaged
rankings.

The most interesting datum for
now is the Average Rank for
each algorithm.

dataset C4.5 C4.5m C4.5¢f C4.5¢f,m
Adult 4 3 2 1
Breast 1 2 3 4
Wisconsin 4 1 2 3
Cmc 4 1 3 2
Ionosphere 4 2 3 1
Iris 1 2.5 4 2.5
Bupa 3 2 4 1
Lung 2.5 2.5 4 1
Lymphography 4 3 2 1
Mushroom 2.5 2.5 2.5 2.5
Tumor 4 2.5 1 2.5
Rheum 3 2 4 1
Voting 4 1 2 3
Wine 3 1 4 2
Average Rank  3.143 2.000 2.893 1.964,7




Basic Non-Parametric Tests and Case Studies

C4.5 C4.5m C4.5¢f C4.5¢f,m
Average Rank  3.143 2.000 2.893 1.964

Friedman’s measure

. 12N |, kk+1)?

AF k(k+1)_z R

=1215“* 0.878+4.000+8.369 +3.857 — 2> | =
—9.28

Observing the critical value, it can be concluded that it rejects the null hypothesis
48
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C4.5 C4.5m C4.5¢f C4.5¢f,m
Average Rank  3.143 2.000 2.893 1.964

Iman and Davenport’s measure

(N =1) 2 139.28
= = =3.69
N(k—1)— 7>  133-9.28

F.=3.69, F(3,3x13) = 2.85

Observing the critical value, it can be concluded that it rejects the null hypothesis
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Basic Non-Parametric Tests and Case Studies

If the null hypothesis is rejected by Friedman or Iman-Davenport test,
we can proceed with a post-hoc test:

The most frequent case is when we want to compare one algorithm (the
proposal) with a set of algorithm. This type of comparison involves a
CONTROL method, and it is usually denoted as a 1 x n comparison.

The simplest procedure in 1 x n comparisons is the Bonferroni-Dunn
test. It adjusts the global level of significance by dividing it by (k — 1) in
all cases, being k the number of algorithms.
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Basic Non-Parametric Tests and Case Studies

However, a more general way to obtain the differences among
algorithms is to obtain a statistic that follow a normal distribution. The
test statistics for comparing the i-th algorithm with the j-th algorithm is

computed by:
k(k+1

The z value is used to find the corresponding probability from the table of
normal distribution, which is then compared with an appropriate a.

In Bonferroni-Dunn, o is always divided by (k - 1) independently of the
comparison, following a very conservative behavior. For this reason other
procedures such as Holm’s or Hochberg’s are preferred.
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Basic Non-Parametric Tests and Case Studies

Holm’s method: We dispose of a test that sequentially checks the hypothesis
ordered according to their significance. We will denote the p values ordered: p, < p,
<ot S P -

Holm’s method compares each p; with o/(k-1) starting from the most significant p
value. If p, Is below than a/(k-1), the corresponding hypothesis is rejected and it
leaves us to compare p, with o/(k-2). If the second hypothesis is rejected, we
continue with the process. As soon as a certain hypothesis can not be rejected, all
the remaining hypothesis are maintained as accepted.

The value of z 1s used for finding the corresponding probability from the table of the
nomal distribution, which is compared with the corresponding value of o .
(Table B.2. Zar — Proportions of the Normal Curve (One-tailed), App 17)
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Basic Non-Parametric Tests and Case Studies

Hochberg’s method: It 1s a step-up procedure that works in the opposite direction
to Holm’s method, comparing the largest p value with o, the next largest with o/2
and so forth until it encounters a hypothesis it can reject. All hypotheses with
smaller p values are then rejected as well.

Hochberg’s method is more powerful than Holm’s although it may under some
circumstances exceed the family-wise error.

it's something .
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Evolutionary Algorithms: CEC’03 Special Session
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G-CMA-ES vs. RT

R~ p-value
BLX-GL50 289.5 35.5 0.001
BLX-MA 205.5 295 0.001
CoEVO 301.0 24.0 0.000
DE 262.5 62.5 0.009
DMS-L-PSO 199.0 126.0 0.357
EDA 284.5 40.5 0.001
K-PCX 269.0 56.0 0.004
L-CMA-ES 273.0 52.0 0.003
L-SaDE 209.0 116.0 0.259
SPC-PNX 305.5 19.5 0.000

G-CMAES versus the remaining algorithms.
P-value obtained through normal approximation
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Table 7 Results of the Friedman and Iman-Davenport tests (o = 0.03)

Friedman Value p-value Iman-Davenport Value p-value
value in 2 value in Fr
f15-125 26.942 18.307 0.0027 3.244 1.930 0.0011
All 41.985 18.307 =0.0001 4.844 1.875 =0.0001
Algorithm Ranking (f15-£25) Ranking (f1-25)
BLX-GL50 5.227 53
BLX-MA 7.681 7.14
CoEVO 9.000 6.44
DE 4.955 5.66
DMS-L-PSO 5.409 5.02
EDA 6.318 6.74
G-CMA-ES 3.045 3.34
K-PCX 7.545 6.8
L-CMA-ES 6.545 6.22
L-SaDE 4.956 4.92 56

SPC-PNX 5.318 6.42
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- A-- ala’a Y ATAY=
U al 'V U N U

H i
Bonferroni-Dunn's Test ., ;57 ae005---
CD=3-643 u=n1 1 n SR EREEE

R stnsonsors B o B ceccrenroemeessesmssuaomses mae rosssasmsescasensssunsos S vove sossessasts cuse s sesasmosemsotns sabe

Average Rank
c = N W & 00 O < OO ©
A ' A s Nl L i ']

by oo} [of josp peop fob jo s g e jau}

BLX- BLX-MA COEVO DE DMS-L- EDA G-CMA- K-PCX L-CMA- L-SADE SPC-PNX
GL50 PSO ES ES

Control Algorithm: G-CMA-ES

Fig. 6 Bonferroni-Dunn’s graphic corresponding to the results for f15-£25
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HoLM/HOCHEERG ITAB LE FOR FUMNCTIONS F1-F25 (G-CMA-ES 18 THE

CONTROL ALGORITHM )

»

i algorithm z D o )i ox
/ .05 0.10 \
10 COEVO 543662 | 543013 -10—% 000500  0.01000
9 BLX-MA 405081 | 5.10899 - 10—5  0.00556  0.01111
A K-PCX 368837 | 2.25603 1079 000625 0.01250
7 EDA 362441 | 2.80610-10—4 000714 0.01429
i SPC-PNX 3.28329 000103 0.00833  0.01667
5 L-CMA-ES  3.07009 000214 0.01000  0.02000
. DE 247313 001339 Q01250 EII:]E‘.[I]/
3 BLX-GL50 205947 0.03667 0.01667 003333
2 DMS-L-PSO  1.79089 0.07331 0.02500  0.05000
1 L-SADE 165429 0.09213 0.05000 0. 10000
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HoLmM/HOCHEERG ITAB LE FOR FUNCTIONS FI1-F25 (G-CMA-ES 15 THE

CONTROL ALGORITHM )

i algorithm z T et o]
(.05 .10
10 COEVO 543662 5.43013.10-° 000500 001000
9 BLX-MA 405081 5.10300 . 10—° 000556 001111
e K-PCX 368837 225603 . 10~% 000625 0.01250
7 EDA 362441 2EO610-10—4 000714 0.01429
6 SPC-PNX 3.28329 (0,103 000833 0.01667
5 L-CMA-ES 307009 000214 O.01000 002000
4 DE 247313 0.01339 001250 0.02500
3 BLX-GL50 2.08947 0.03667 001667 003333
2 DMS-L-PSO  1.79089 007331 002500 D.GSDEI]}
EVERYTHING | L-SADE 1.68429 009213 005000 0, 10000
WENT =
BETTER
THAN
XPECTED
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J

M) A
Utorrarly

Holm's [ Hochberg's procedures a=0.05 T~ 7
,:I:D_1c| ST TTIL
. \ ------- -
0.00 - i
1
0.08 - E
0.07 - =
iy o H
= 0.06 i
T 0.05 - ittt
E 0.04 - - [
I:IDB J IFIII-IIIIII JI
oo24 s i I_____!
I:H:H L L I 11 [ 1] preeEmEE———— ot mnmR—I— -._-. ------ -_ ___----|-
0 — e T (e e e = (T 0,001 0.002 m 1031 p.or: p.oa3
COEVD BLX-MA K-FCX  EDA  SPC-PNXL-CMA-E2 DE  BLX-GLS0 DMSL- L-SADE
PSO
Control Algorithm: G-CMA-ES
Fig. 11. Holm’s/Hochberg’s procedure for all functions (f1-£25).
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Design of Experiments

They are not the objective of our talk, but they are two
additional important questions:

1 Benchmark functions/data sets ... are very important.

] To compare with the state of the art is a necessity.

NOTHING TO
DO HERE

(‘f‘ R 64




What happens if I use a nonparametric test when the data
is normal?

m It will work, but a parametric test would be more
powerful, i.e., give a lower p value.

m If the data is not normal, then the nonparametric
test is usually more powerful

m Always look at the data first, then decide
what test to use.
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General

If we have a set of data sets/benchmark functions, we must apply a

parametric test for each data set/benchmark function.

We only need to use a non-parametric test for comparing the

algorithms on the whole set of benchmarks.
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Multiple comparison with a control (1)

1 Holm’s procedure can always be considered better than
Bonferroni-Dunn’s one, because it appropriately controls the
FWER and 1t 1s more powerful than the Bonferroni-Dunn’s. We
strongly recommend the use of Holm’s method in a rigorous
comparison.

1 Hochberg’s procedure is more powerful than Holm’s. The
differences reported between it and Holm’s procedure are in
practice rather small. We recommend the use of this test together
with Holm’s method

@)}
~]




Multiple comparison with a control (2)

1 The choice of any of the statistical procedures for conducting an
experimental analysis should be justified by the researcher. The use
of the most powerful procedures does not imply that the results
obtained by his/her proposal will be better
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Lessons Learned

— FrequentQuestions

J Can we analyze any performance measure?

] With non-parametric statistic, any unitary performance measure
(associated to an only algorithm) with a pre-defined range of output
can be analyzed. This range could be unlimited, allowing us to
analyze time resources as example.
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Lessons Learned

-~ FrequentQuestons

1 Can we compare deterministic algorithms with stochastic ones?

] They allow us to compare both types of algorithms because they
can be applied in multi-domain comparisons, where the sample of
results 1s composed by a result that relates an algorithm and a

domain of aplication (problem, function, data-set, ...)
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Lessons Learned

— FrequentQuestions

1 How the average results should be obtained from each
algorithm?

J This question does not concern to the use of non-parametric
statistics, due to the fact that these tests require a result for each
pair algorithm-domain. The obtaining of such result must be
according to a standard procedure followed by all the algorithms in
the comparison, such the case of validation techniques. Average
results from various runs (at least 3) must be used for stochastic
algorithms.
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Lessons Learned

— FrequentQuestions

J What is the relationship between the number of algorithms and
datasets/problems to do a correct statistical analysis?

J In multiple comparisons, the number of problems (data-sets)
must be greater than the double of algorithms. With lesser data-sets,
it 1s highly probable to not reject any null hyphotesis.
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Lessons Learned

— FrequentQuestions

O Is there a maximum number of datasets/problems to be used?

] There not exists a theoretical threshold, although if the number
of problems is very high in relation with the number of algorithms,
the results trend to be inaccurate by the central limit theorem. For
pairwise comparisons, such Wilcoxon’s, a maximum of 30
problems is suggested. In multiple comparisons with a control, we
should indicate as a rule of thumb that n > 8-k could be excessive
and results 1n no significant comparisons.
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Lessons Learned

-~ FrequentQuestons

 The Wilcoxon test applied several times works better than a
multiple comparison test such as Holm, Is it correct to be used in
these cases?

(J The Wilcoxon test can be applied according a multiple
comparison scheme, but the results obtained cannot be considered
into a family which control the FWER. Each time a new
comparison 1s conducted, the level of significance established a
priori can be overcome. For this reason, the multiple comparison
tests exist.
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Lessons Learned

— FrequentQuestions

(J Can we use only the rankings obtained to justify the results?

] With the rankings values obtained by Friedman and derivatives
we can establish a clear order 1n the algorithms and even to
measure the differences among them. However, it cannot be
concluded that one proposal is better than other until the hypothesis
of comparison associated to them i1s rejected.
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Lessons Learned

— FrequentQuestions

U Is it necessary to check the rejection of the null hypothesis of
Friedman and derivatives before conducting a post-hoc analysis?

] It should be done, although by definition, it can be computed
independently.
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Books of interest and References

P1: S. Garcia, F. Herrera, An Extension on "Statistical Comparisons of Classifiers

N\ over Multiple Data Sets" for all Pairwise Comparisons. Journal of Machine
Learning Research 9 (2008) 2677-2694
P
el P2:J. Luengo, S. Garcia, F. Herrera, A Study on the Use of Statistical Tests for
E"m*"'mf_j':"" Experimentation with Neural Networks: Analysis of Parametric Test Conditions
= and Non-Parametric Tests. Expert Systems with Applications 36 (2009) 7798-7808
L doi:10.1016/j.eswa.2008.11.041.
P3: S. Garcia, A. Fernandez, J. Luengo, F. Herrera, A Study of Statistical Techniques
I Soft Colpm and Performance Measures for Genetics-Based Machine Learning: Accuracy and
- Interpretability. Soft Computing 13:10 (2009) 959-977, doi:10.1007/s00500-008-
.= 0392-y.

HEURISTICS P4: S. Garcia, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-
Parametric Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case
Study on the CEC'2005 Special Session on Real Parameter Optimization. Journal
of Heuristics, 15 (2009) 617-644. doi: 10.1007/s10732-008-9080-4.

NN P5: S. Garcia, A. Ferndndez, J. Luengo, F. Herrera, Advanced nonparametric tests
= for multiple comparisons in the design of experiments in computational

intelligence and data mining: Experimental Analysis of Power. Information
Sciences 180 (2010) 2044-2064. doi:10.1016/j.ins.2009.12.010. 79




Books of interest and References

J.H. Zar, Biostatistical Analyhsis, Prentice Hall, 1999.

D. Sheskin. Handbook of parametric and nonparametric i
statistical procedures. Chapman & Hall/CRC, 2007. i

Demsar, J., Statistical comparisons of classifiers over multiple

data sets. Journal of Machine Learning Research. Vol. 7. pp. 1-
30. 2006.
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Books of interest and References

- W.W. Daniel. Applied Nonparametric Statistics.
Houghton Mifflin Harcourt. (1990)

W.J. Conover. Practical Nonparametric Statistics.

Wiley. (1998)

M. Hollander and D.A. Wolfe. Nonparametric Statistical Methods.

Wiley-Interscience. (1999) E
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J.J. Higgins. Introduction to Modern Nonparametric

Statistics. Duxbury Press. (2003).



Books of interest and References

Website http://sci2s.ugr.es/sicidm/

The web 1s organized according to the following SUINMArYy:
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Software

Software for conducting nonparametric statistical analysis

http://www.keel.es/ I
) saftuware

A Datasels  Algorthm1  Algoithm?  Algorithn3  Algorithm 4 Algorithm 5
() Friedman test N Data set 1 0.0] 0.0 0.0] 0.0 0,
) - Data set 2 0.0 0.0 0.0 0.0 0,
() Quade test 1xM Contrast estimation Data set 3 0.0| 0.0 0.0| 0.0 0,
() Friedman Aligned test 1xN (%) Wilcoxon test 1x1 Data set 4 0.0 0.0 0.0 0.0 0.
Data set 5 0.0] 0.0 0.0] 0.0 0,
TrfmE e Data sets 0.0 0.0 0.0 0.0 0,
Data set 7 0.0] 0.0 0.0] 0.0 0,
[T Iman-Davenport [T Hommel [ Data set3 0.0 0.0 0.0 0.0 0.
. . Data set? 0.0 0.0 0.0 0.0 0,
[ Bonferroni-Dunn [7] Holland Nemenyi At et 10 ol 0.0 o .0 o
[] Holm [C1Rom Shaffer
[ Hochberg [ Finner Bergman
Performance measure
@ Maximize ©) Minimize
Load data l i Export data l I Clear data l
Methods: &
Data sets: |10
I Perform analysis
‘ n 3
User Manual |
o
KEEL Tool for Statistical Analysis
Statistical procedures
This module allows to perform several non-parametric statistical test over a given set of results Further information about them can be
found in the SCI2S thematic Web Site of Statistical Inference in Computational Intelligence and Data Mining: http:/sci2s.ugr es/sicidm/
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How must I conduct statistical comparisons in my Experimental
Study? On the use of Nonparametric Tests and Case Studies.

Thanks!!
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